Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+1=4xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
2x+1=4x^{2}
Whakareatia te x ki te x, ka x^{2}.
2x+1-4x^{2}=0
Tangohia te 4x^{2} mai i ngā taha e rua.
-4x^{2}+2x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 2 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2\left(-4\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+16}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-2±\sqrt{20}}{2\left(-4\right)}
Tāpiri 4 ki te 16.
x=\frac{-2±2\sqrt{5}}{2\left(-4\right)}
Tuhia te pūtakerua o te 20.
x=\frac{-2±2\sqrt{5}}{-8}
Whakareatia 2 ki te -4.
x=\frac{2\sqrt{5}-2}{-8}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{5}}{-8} ina he tāpiri te ±. Tāpiri -2 ki te 2\sqrt{5}.
x=\frac{1-\sqrt{5}}{4}
Whakawehe -2+2\sqrt{5} ki te -8.
x=\frac{-2\sqrt{5}-2}{-8}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{5}}{-8} ina he tango te ±. Tango 2\sqrt{5} mai i -2.
x=\frac{\sqrt{5}+1}{4}
Whakawehe -2-2\sqrt{5} ki te -8.
x=\frac{1-\sqrt{5}}{4} x=\frac{\sqrt{5}+1}{4}
Kua oti te whārite te whakatau.
2x+1=4xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
2x+1=4x^{2}
Whakareatia te x ki te x, ka x^{2}.
2x+1-4x^{2}=0
Tangohia te 4x^{2} mai i ngā taha e rua.
2x-4x^{2}=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-4x^{2}+2x=-1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-4x^{2}+2x}{-4}=-\frac{1}{-4}
Whakawehea ngā taha e rua ki te -4.
x^{2}+\frac{2}{-4}x=-\frac{1}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
x^{2}-\frac{1}{2}x=-\frac{1}{-4}
Whakahekea te hautanga \frac{2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{2}x=\frac{1}{4}
Whakawehe -1 ki te -4.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{4}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{4}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{5}{16}
Tāpiri \frac{1}{4} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=\frac{5}{16}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{5}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{\sqrt{5}}{4} x-\frac{1}{4}=-\frac{\sqrt{5}}{4}
Whakarūnātia.
x=\frac{\sqrt{5}+1}{4} x=\frac{1-\sqrt{5}}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.