Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2w}{\left(w-1\right)\left(w+1\right)}+\frac{w}{w-1}
Tauwehea te w^{2}-1.
\frac{2w}{\left(w-1\right)\left(w+1\right)}+\frac{w\left(w+1\right)}{\left(w-1\right)\left(w+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(w-1\right)\left(w+1\right) me w-1 ko \left(w-1\right)\left(w+1\right). Whakareatia \frac{w}{w-1} ki te \frac{w+1}{w+1}.
\frac{2w+w\left(w+1\right)}{\left(w-1\right)\left(w+1\right)}
Tā te mea he rite te tauraro o \frac{2w}{\left(w-1\right)\left(w+1\right)} me \frac{w\left(w+1\right)}{\left(w-1\right)\left(w+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2w+w^{2}+w}{\left(w-1\right)\left(w+1\right)}
Mahia ngā whakarea i roto o 2w+w\left(w+1\right).
\frac{3w+w^{2}}{\left(w-1\right)\left(w+1\right)}
Whakakotahitia ngā kupu rite i 2w+w^{2}+w.
\frac{3w+w^{2}}{w^{2}-1}
Whakarohaina te \left(w-1\right)\left(w+1\right).