Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki v
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(3v^{1}-9\right)\frac{\mathrm{d}}{\mathrm{d}v}(2v^{1})-2v^{1}\frac{\mathrm{d}}{\mathrm{d}v}(3v^{1}-9)}{\left(3v^{1}-9\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(3v^{1}-9\right)\times 2v^{1-1}-2v^{1}\times 3v^{1-1}}{\left(3v^{1}-9\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(3v^{1}-9\right)\times 2v^{0}-2v^{1}\times 3v^{0}}{\left(3v^{1}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{3v^{1}\times 2v^{0}-9\times 2v^{0}-2v^{1}\times 3v^{0}}{\left(3v^{1}-9\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{3\times 2v^{1}-9\times 2v^{0}-2\times 3v^{1}}{\left(3v^{1}-9\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{6v^{1}-18v^{0}-6v^{1}}{\left(3v^{1}-9\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(6-6\right)v^{1}-18v^{0}}{\left(3v^{1}-9\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-18v^{0}}{\left(3v^{1}-9\right)^{2}}
Tango 6 mai i 6.
\frac{-18v^{0}}{\left(3v-9\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-18}{\left(3v-9\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.