Whakaoti mō t
t=1
t=3
Pātaitai
Quadratic Equation
\frac { 2 t - 3 t } { t + 3 - t } = \frac { t - 1 - 2 t } { 10 - ( t + 3 ) }
Tohaina
Kua tāruatia ki te papatopenga
\left(t-7\right)\left(2t-3t\right)=-3\left(t-1-2t\right)
Tē taea kia ōrite te tāupe t ki 7 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(t-7\right), arā, te tauraro pātahi he tino iti rawa te kitea o t+3-t,10-\left(t+3\right).
\left(t-7\right)\left(-1\right)t=-3\left(t-1-2t\right)
Pahekotia te 2t me -3t, ka -t.
\left(-t+7\right)t=-3\left(t-1-2t\right)
Whakamahia te āhuatanga tohatoha hei whakarea te t-7 ki te -1.
-t^{2}+7t=-3\left(t-1-2t\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -t+7 ki te t.
-t^{2}+7t=-3\left(-t-1\right)
Pahekotia te t me -2t, ka -t.
-t^{2}+7t=3t+3
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te -t-1.
-t^{2}+7t-3t=3
Tangohia te 3t mai i ngā taha e rua.
-t^{2}+4t=3
Pahekotia te 7t me -3t, ka 4t.
-t^{2}+4t-3=0
Tangohia te 3 mai i ngā taha e rua.
t=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 4 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-4±\sqrt{16-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Pūrua 4.
t=\frac{-4±\sqrt{16+4\left(-3\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
t=\frac{-4±\sqrt{16-12}}{2\left(-1\right)}
Whakareatia 4 ki te -3.
t=\frac{-4±\sqrt{4}}{2\left(-1\right)}
Tāpiri 16 ki te -12.
t=\frac{-4±2}{2\left(-1\right)}
Tuhia te pūtakerua o te 4.
t=\frac{-4±2}{-2}
Whakareatia 2 ki te -1.
t=-\frac{2}{-2}
Nā, me whakaoti te whārite t=\frac{-4±2}{-2} ina he tāpiri te ±. Tāpiri -4 ki te 2.
t=1
Whakawehe -2 ki te -2.
t=-\frac{6}{-2}
Nā, me whakaoti te whārite t=\frac{-4±2}{-2} ina he tango te ±. Tango 2 mai i -4.
t=3
Whakawehe -6 ki te -2.
t=1 t=3
Kua oti te whārite te whakatau.
\left(t-7\right)\left(2t-3t\right)=-3\left(t-1-2t\right)
Tē taea kia ōrite te tāupe t ki 7 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(t-7\right), arā, te tauraro pātahi he tino iti rawa te kitea o t+3-t,10-\left(t+3\right).
\left(t-7\right)\left(-1\right)t=-3\left(t-1-2t\right)
Pahekotia te 2t me -3t, ka -t.
\left(-t+7\right)t=-3\left(t-1-2t\right)
Whakamahia te āhuatanga tohatoha hei whakarea te t-7 ki te -1.
-t^{2}+7t=-3\left(t-1-2t\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -t+7 ki te t.
-t^{2}+7t=-3\left(-t-1\right)
Pahekotia te t me -2t, ka -t.
-t^{2}+7t=3t+3
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te -t-1.
-t^{2}+7t-3t=3
Tangohia te 3t mai i ngā taha e rua.
-t^{2}+4t=3
Pahekotia te 7t me -3t, ka 4t.
\frac{-t^{2}+4t}{-1}=\frac{3}{-1}
Whakawehea ngā taha e rua ki te -1.
t^{2}+\frac{4}{-1}t=\frac{3}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
t^{2}-4t=\frac{3}{-1}
Whakawehe 4 ki te -1.
t^{2}-4t=-3
Whakawehe 3 ki te -1.
t^{2}-4t+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-4t+4=-3+4
Pūrua -2.
t^{2}-4t+4=1
Tāpiri -3 ki te 4.
\left(t-2\right)^{2}=1
Tauwehea t^{2}-4t+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-2=1 t-2=-1
Whakarūnātia.
t=3 t=1
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}