Whakaoti mō p
p=-\frac{1}{9}\approx -0.111111111
Tohaina
Kua tāruatia ki te papatopenga
7\left(2p+1\right)=5p+6
Tē taea kia ōrite te tāupe p ki -\frac{6}{5} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 7\left(5p+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o 5p+6,7.
14p+7=5p+6
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te 2p+1.
14p+7-5p=6
Tangohia te 5p mai i ngā taha e rua.
9p+7=6
Pahekotia te 14p me -5p, ka 9p.
9p=6-7
Tangohia te 7 mai i ngā taha e rua.
9p=-1
Tangohia te 7 i te 6, ka -1.
p=\frac{-1}{9}
Whakawehea ngā taha e rua ki te 9.
p=-\frac{1}{9}
Ka taea te hautanga \frac{-1}{9} te tuhi anō ko -\frac{1}{9} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}