Aromātai
\frac{4n^{2}+9mn-4m^{2}}{3n\left(2n-m\right)}
Kimi Pārōnaki e ai ki m
\frac{2\left(-2m^{2}+8mn-11n^{2}\right)}{3n\left(m-2n\right)\left(2n-m\right)}
Tohaina
Kua tāruatia ki te papatopenga
\frac{2n}{3n}+\frac{m}{2n-m}+\frac{4mn}{4n^{2}-n^{2}}
Pahekotia te n me 2n, ka 3n.
\frac{2}{3}+\frac{m}{2n-m}+\frac{4mn}{4n^{2}-n^{2}}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{2}{3}+\frac{m}{2n-m}+\frac{4mn}{3n^{2}}
Pahekotia te 4n^{2} me -n^{2}, ka 3n^{2}.
\frac{2}{3}+\frac{m}{2n-m}+\frac{4m}{3n}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{2\left(-m+2n\right)}{3\left(-m+2n\right)}+\frac{3m}{3\left(-m+2n\right)}+\frac{4m}{3n}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2n-m ko 3\left(-m+2n\right). Whakareatia \frac{2}{3} ki te \frac{-m+2n}{-m+2n}. Whakareatia \frac{m}{2n-m} ki te \frac{3}{3}.
\frac{2\left(-m+2n\right)+3m}{3\left(-m+2n\right)}+\frac{4m}{3n}
Tā te mea he rite te tauraro o \frac{2\left(-m+2n\right)}{3\left(-m+2n\right)} me \frac{3m}{3\left(-m+2n\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-2m+4n+3m}{3\left(-m+2n\right)}+\frac{4m}{3n}
Mahia ngā whakarea i roto o 2\left(-m+2n\right)+3m.
\frac{m+4n}{3\left(-m+2n\right)}+\frac{4m}{3n}
Whakakotahitia ngā kupu rite i -2m+4n+3m.
\frac{\left(m+4n\right)n}{3n\left(-m+2n\right)}+\frac{4m\left(-m+2n\right)}{3n\left(-m+2n\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3\left(-m+2n\right) me 3n ko 3n\left(-m+2n\right). Whakareatia \frac{m+4n}{3\left(-m+2n\right)} ki te \frac{n}{n}. Whakareatia \frac{4m}{3n} ki te \frac{-m+2n}{-m+2n}.
\frac{\left(m+4n\right)n+4m\left(-m+2n\right)}{3n\left(-m+2n\right)}
Tā te mea he rite te tauraro o \frac{\left(m+4n\right)n}{3n\left(-m+2n\right)} me \frac{4m\left(-m+2n\right)}{3n\left(-m+2n\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{mn+4n^{2}-4m^{2}+8mn}{3n\left(-m+2n\right)}
Mahia ngā whakarea i roto o \left(m+4n\right)n+4m\left(-m+2n\right).
\frac{-4m^{2}+9mn+4n^{2}}{3n\left(-m+2n\right)}
Whakakotahitia ngā kupu rite i mn+4n^{2}-4m^{2}+8mn.
\frac{-4m^{2}+9mn+4n^{2}}{-3mn+6n^{2}}
Whakarohaina te 3n\left(-m+2n\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}