Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2n^{2}=9\times 2
Me whakarea ngā taha e rua ki te 2.
n^{2}=9
Me whakakore te 2 ki ngā taha e rua.
n^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
\left(n-3\right)\left(n+3\right)=0
Whakaarohia te n^{2}-9. Tuhia anō te n^{2}-9 hei n^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n=3 n=-3
Hei kimi otinga whārite, me whakaoti te n-3=0 me te n+3=0.
2n^{2}=9\times 2
Me whakarea ngā taha e rua ki te 2.
n^{2}=9
Me whakakore te 2 ki ngā taha e rua.
n=3 n=-3
Tuhia te pūtakerua o ngā taha e rua o te whārite.
2n^{2}=9\times 2
Me whakarea ngā taha e rua ki te 2.
n^{2}=9
Me whakakore te 2 ki ngā taha e rua.
n^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
n=\frac{0±\sqrt{0^{2}-4\left(-9\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-9\right)}}{2}
Pūrua 0.
n=\frac{0±\sqrt{36}}{2}
Whakareatia -4 ki te -9.
n=\frac{0±6}{2}
Tuhia te pūtakerua o te 36.
n=3
Nā, me whakaoti te whārite n=\frac{0±6}{2} ina he tāpiri te ±. Whakawehe 6 ki te 2.
n=-3
Nā, me whakaoti te whārite n=\frac{0±6}{2} ina he tango te ±. Whakawehe -6 ki te 2.
n=3 n=-3
Kua oti te whārite te whakatau.