Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2m-n}{-m+n}+\frac{-m}{-m+n}+\frac{n}{n-m}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n-m me m-n ko -m+n. Whakareatia \frac{m}{m-n} ki te \frac{-1}{-1}.
\frac{2m-n-m}{-m+n}+\frac{n}{n-m}
Tā te mea he rite te tauraro o \frac{2m-n}{-m+n} me \frac{-m}{-m+n}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{m-n}{-m+n}+\frac{n}{n-m}
Whakakotahitia ngā kupu rite i 2m-n-m.
\frac{-\left(-m+n\right)}{-m+n}+\frac{n}{n-m}
Unuhia te tohu tōraro i roto o m-n.
-1+\frac{n}{n-m}
Me whakakore tahi te -m+n i te taurunga me te tauraro.
-\frac{n-m}{n-m}+\frac{n}{n-m}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -1 ki te \frac{n-m}{n-m}.
\frac{-\left(n-m\right)+n}{n-m}
Tā te mea he rite te tauraro o -\frac{n-m}{n-m} me \frac{n}{n-m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-n+m+n}{n-m}
Mahia ngā whakarea i roto o -\left(n-m\right)+n.
\frac{m}{n-m}
Whakakotahitia ngā kupu rite i -n+m+n.
\frac{2m-n}{-m+n}+\frac{-m}{-m+n}+\frac{n}{n-m}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n-m me m-n ko -m+n. Whakareatia \frac{m}{m-n} ki te \frac{-1}{-1}.
\frac{2m-n-m}{-m+n}+\frac{n}{n-m}
Tā te mea he rite te tauraro o \frac{2m-n}{-m+n} me \frac{-m}{-m+n}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{m-n}{-m+n}+\frac{n}{n-m}
Whakakotahitia ngā kupu rite i 2m-n-m.
\frac{-\left(-m+n\right)}{-m+n}+\frac{n}{n-m}
Unuhia te tohu tōraro i roto o m-n.
-1+\frac{n}{n-m}
Me whakakore tahi te -m+n i te taurunga me te tauraro.
-\frac{n-m}{n-m}+\frac{n}{n-m}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -1 ki te \frac{n-m}{n-m}.
\frac{-\left(n-m\right)+n}{n-m}
Tā te mea he rite te tauraro o -\frac{n-m}{n-m} me \frac{n}{n-m}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-n+m+n}{n-m}
Mahia ngā whakarea i roto o -\left(n-m\right)+n.
\frac{m}{n-m}
Whakakotahitia ngā kupu rite i -n+m+n.