Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2k^{2}+21k+27}{9k^{2}-33k+28}\times \frac{\left(3k-4\right)\left(3k+4\right)}{\left(2k+3\right)\left(3k+4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{9k^{2}-16}{6k^{2}+17k+12}.
\frac{2k^{2}+21k+27}{9k^{2}-33k+28}\times \frac{3k-4}{2k+3}
Me whakakore tahi te 3k+4 i te taurunga me te tauraro.
\frac{\left(2k^{2}+21k+27\right)\left(3k-4\right)}{\left(9k^{2}-33k+28\right)\left(2k+3\right)}
Me whakarea te \frac{2k^{2}+21k+27}{9k^{2}-33k+28} ki te \frac{3k-4}{2k+3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(3k-4\right)\left(k+9\right)\left(2k+3\right)}{\left(3k-7\right)\left(3k-4\right)\left(2k+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{k+9}{3k-7}
Me whakakore tahi te \left(3k-4\right)\left(2k+3\right) i te taurunga me te tauraro.
\frac{2k^{2}+21k+27}{9k^{2}-33k+28}\times \frac{\left(3k-4\right)\left(3k+4\right)}{\left(2k+3\right)\left(3k+4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{9k^{2}-16}{6k^{2}+17k+12}.
\frac{2k^{2}+21k+27}{9k^{2}-33k+28}\times \frac{3k-4}{2k+3}
Me whakakore tahi te 3k+4 i te taurunga me te tauraro.
\frac{\left(2k^{2}+21k+27\right)\left(3k-4\right)}{\left(9k^{2}-33k+28\right)\left(2k+3\right)}
Me whakarea te \frac{2k^{2}+21k+27}{9k^{2}-33k+28} ki te \frac{3k-4}{2k+3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(3k-4\right)\left(k+9\right)\left(2k+3\right)}{\left(3k-7\right)\left(3k-4\right)\left(2k+3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{k+9}{3k-7}
Me whakakore tahi te \left(3k-4\right)\left(2k+3\right) i te taurunga me te tauraro.