Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2i\left(7-i\right)}{\left(7+i\right)\left(7-i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 7-i.
\frac{2i\left(7-i\right)}{7^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2i\left(7-i\right)}{50}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{2i\times 7+2\left(-1\right)i^{2}}{50}
Whakareatia 2i ki te 7-i.
\frac{2i\times 7+2\left(-1\right)\left(-1\right)}{50}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{2+14i}{50}
Mahia ngā whakarea i roto o 2i\times 7+2\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
\frac{1}{25}+\frac{7}{25}i
Whakawehea te 2+14i ki te 50, kia riro ko \frac{1}{25}+\frac{7}{25}i.
Re(\frac{2i\left(7-i\right)}{\left(7+i\right)\left(7-i\right)})
Me whakarea te taurunga me te tauraro o \frac{2i}{7+i} ki te haumi hiato o te tauraro, 7-i.
Re(\frac{2i\left(7-i\right)}{7^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2i\left(7-i\right)}{50})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{2i\times 7+2\left(-1\right)i^{2}}{50})
Whakareatia 2i ki te 7-i.
Re(\frac{2i\times 7+2\left(-1\right)\left(-1\right)}{50})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{2+14i}{50})
Mahia ngā whakarea i roto o 2i\times 7+2\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(\frac{1}{25}+\frac{7}{25}i)
Whakawehea te 2+14i ki te 50, kia riro ko \frac{1}{25}+\frac{7}{25}i.
\frac{1}{25}
Ko te wāhi tūturu o \frac{1}{25}+\frac{7}{25}i ko \frac{1}{25}.