Aromātai
-\frac{2c^{3}}{3}-\frac{c^{2}}{3}+c
Whakaroha
-\frac{2c^{3}}{3}-\frac{c^{2}}{3}+c
Tohaina
Kua tāruatia ki te papatopenga
\frac{2c+3}{3}c\left(1-c\right)
Whakawehea ia wā o 2-2c ki te 2, kia riro ko 1-c.
\frac{\left(2c+3\right)c}{3}\left(1-c\right)
Tuhia te \frac{2c+3}{3}c hei hautanga kotahi.
\frac{\left(2c+3\right)c\left(1-c\right)}{3}
Tuhia te \frac{\left(2c+3\right)c}{3}\left(1-c\right) hei hautanga kotahi.
\frac{\left(2c^{2}+3c\right)\left(1-c\right)}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2c+3 ki te c.
\frac{2c^{2}-2c^{3}+3c-3c^{2}}{3}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2c^{2}+3c ki ia tau o 1-c.
\frac{-c^{2}-2c^{3}+3c}{3}
Pahekotia te 2c^{2} me -3c^{2}, ka -c^{2}.
\frac{2c+3}{3}c\left(1-c\right)
Whakawehea ia wā o 2-2c ki te 2, kia riro ko 1-c.
\frac{\left(2c+3\right)c}{3}\left(1-c\right)
Tuhia te \frac{2c+3}{3}c hei hautanga kotahi.
\frac{\left(2c+3\right)c\left(1-c\right)}{3}
Tuhia te \frac{\left(2c+3\right)c}{3}\left(1-c\right) hei hautanga kotahi.
\frac{\left(2c^{2}+3c\right)\left(1-c\right)}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2c+3 ki te c.
\frac{2c^{2}-2c^{3}+3c-3c^{2}}{3}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2c^{2}+3c ki ia tau o 1-c.
\frac{-c^{2}-2c^{3}+3c}{3}
Pahekotia te 2c^{2} me -3c^{2}, ka -c^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}