Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2c+3}{3}c\left(1-c\right)
Whakawehea ia wā o 2-2c ki te 2, kia riro ko 1-c.
\frac{\left(2c+3\right)c}{3}\left(1-c\right)
Tuhia te \frac{2c+3}{3}c hei hautanga kotahi.
\frac{\left(2c+3\right)c\left(1-c\right)}{3}
Tuhia te \frac{\left(2c+3\right)c}{3}\left(1-c\right) hei hautanga kotahi.
\frac{\left(2c^{2}+3c\right)\left(1-c\right)}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2c+3 ki te c.
\frac{2c^{2}-2c^{3}+3c-3c^{2}}{3}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2c^{2}+3c ki ia tau o 1-c.
\frac{-c^{2}-2c^{3}+3c}{3}
Pahekotia te 2c^{2} me -3c^{2}, ka -c^{2}.
\frac{2c+3}{3}c\left(1-c\right)
Whakawehea ia wā o 2-2c ki te 2, kia riro ko 1-c.
\frac{\left(2c+3\right)c}{3}\left(1-c\right)
Tuhia te \frac{2c+3}{3}c hei hautanga kotahi.
\frac{\left(2c+3\right)c\left(1-c\right)}{3}
Tuhia te \frac{\left(2c+3\right)c}{3}\left(1-c\right) hei hautanga kotahi.
\frac{\left(2c^{2}+3c\right)\left(1-c\right)}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2c+3 ki te c.
\frac{2c^{2}-2c^{3}+3c-3c^{2}}{3}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2c^{2}+3c ki ia tau o 1-c.
\frac{-c^{2}-2c^{3}+3c}{3}
Pahekotia te 2c^{2} me -3c^{2}, ka -c^{2}.