Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2b^{3}\right)^{1}\times \frac{1}{-6b^{9}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
2^{1}\left(b^{3}\right)^{1}\times \frac{1}{-6}\times \frac{1}{b^{9}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
2^{1}\times \frac{1}{-6}\left(b^{3}\right)^{1}\times \frac{1}{b^{9}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
2^{1}\times \frac{1}{-6}b^{3}b^{9\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
2^{1}\times \frac{1}{-6}b^{3}b^{-9}
Whakareatia 9 ki te -1.
2^{1}\times \frac{1}{-6}b^{3-9}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
2^{1}\times \frac{1}{-6}b^{-6}
Tāpirihia ngā taupū 3 me -9.
2\times \frac{1}{-6}b^{-6}
Hīkina te 2 ki te pū 1.
2\left(-\frac{1}{6}\right)b^{-6}
Hīkina te -6 ki te pū -1.
-\frac{1}{3}b^{-6}
Whakareatia 2 ki te -\frac{1}{6}.
\frac{2^{1}b^{3}}{\left(-6\right)^{1}b^{9}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{2^{1}b^{3-9}}{\left(-6\right)^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{2^{1}b^{-6}}{\left(-6\right)^{1}}
Tango 9 mai i 3.
-\frac{1}{3}b^{-6}
Whakahekea te hautanga \frac{2}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{2}{-6}b^{3-9})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}b}(-\frac{1}{3}b^{-6})
Mahia ngā tātaitanga.
-6\left(-\frac{1}{3}\right)b^{-6-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
2b^{-7}
Mahia ngā tātaitanga.