Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2a+2b}{b}\left(\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{a-b}{\left(a+b\right)\left(a-b\right)}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-b me a+b ko \left(a+b\right)\left(a-b\right). Whakareatia \frac{1}{a-b} ki te \frac{a+b}{a+b}. Whakareatia \frac{1}{a+b} ki te \frac{a-b}{a-b}.
\frac{2a+2b}{b}\times \frac{a+b-\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
Tā te mea he rite te tauraro o \frac{a+b}{\left(a+b\right)\left(a-b\right)} me \frac{a-b}{\left(a+b\right)\left(a-b\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2a+2b}{b}\times \frac{a+b-a+b}{\left(a+b\right)\left(a-b\right)}
Mahia ngā whakarea i roto o a+b-\left(a-b\right).
\frac{2a+2b}{b}\times \frac{2b}{\left(a+b\right)\left(a-b\right)}
Whakakotahitia ngā kupu rite i a+b-a+b.
\frac{\left(2a+2b\right)\times 2b}{b\left(a+b\right)\left(a-b\right)}
Me whakarea te \frac{2a+2b}{b} ki te \frac{2b}{\left(a+b\right)\left(a-b\right)} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2\left(2a+2b\right)}{\left(a+b\right)\left(a-b\right)}
Me whakakore tahi te b i te taurunga me te tauraro.
\frac{2^{2}\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{2^{2}}{a-b}
Me whakakore tahi te a+b i te taurunga me te tauraro.
\frac{4}{a-b}
Me whakaroha te kīanga.
\frac{2a+2b}{b}\left(\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{a-b}{\left(a+b\right)\left(a-b\right)}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-b me a+b ko \left(a+b\right)\left(a-b\right). Whakareatia \frac{1}{a-b} ki te \frac{a+b}{a+b}. Whakareatia \frac{1}{a+b} ki te \frac{a-b}{a-b}.
\frac{2a+2b}{b}\times \frac{a+b-\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
Tā te mea he rite te tauraro o \frac{a+b}{\left(a+b\right)\left(a-b\right)} me \frac{a-b}{\left(a+b\right)\left(a-b\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2a+2b}{b}\times \frac{a+b-a+b}{\left(a+b\right)\left(a-b\right)}
Mahia ngā whakarea i roto o a+b-\left(a-b\right).
\frac{2a+2b}{b}\times \frac{2b}{\left(a+b\right)\left(a-b\right)}
Whakakotahitia ngā kupu rite i a+b-a+b.
\frac{\left(2a+2b\right)\times 2b}{b\left(a+b\right)\left(a-b\right)}
Me whakarea te \frac{2a+2b}{b} ki te \frac{2b}{\left(a+b\right)\left(a-b\right)} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2\left(2a+2b\right)}{\left(a+b\right)\left(a-b\right)}
Me whakakore tahi te b i te taurunga me te tauraro.
\frac{2^{2}\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{2^{2}}{a-b}
Me whakakore tahi te a+b i te taurunga me te tauraro.
\frac{4}{a-b}
Me whakaroha te kīanga.