Aromātai
\frac{1}{5}-\frac{2}{5}i=0.2-0.4i
Wāhi Tūturu
\frac{1}{5} = 0.2
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2-i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 4-3i.
\frac{\left(2-i\right)\left(4-3i\right)}{4^{2}-3^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-i\right)\left(4-3i\right)}{25}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3i^{2}\right)}{25}
Me whakarea ngā tau matatini 2-i me 4-3i pēnā i te whakarea huarua.
\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right)}{25}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{8-6i-4i-3}{25}
Mahia ngā whakarea i roto o 2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right).
\frac{8-3+\left(-6-4\right)i}{25}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 8-6i-4i-3.
\frac{5-10i}{25}
Mahia ngā tāpiri i roto o 8-3+\left(-6-4\right)i.
\frac{1}{5}-\frac{2}{5}i
Whakawehea te 5-10i ki te 25, kia riro ko \frac{1}{5}-\frac{2}{5}i.
Re(\frac{\left(2-i\right)\left(4-3i\right)}{\left(4+3i\right)\left(4-3i\right)})
Me whakarea te taurunga me te tauraro o \frac{2-i}{4+3i} ki te haumi hiato o te tauraro, 4-3i.
Re(\frac{\left(2-i\right)\left(4-3i\right)}{4^{2}-3^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(2-i\right)\left(4-3i\right)}{25})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3i^{2}\right)}{25})
Me whakarea ngā tau matatini 2-i me 4-3i pēnā i te whakarea huarua.
Re(\frac{2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right)}{25})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{8-6i-4i-3}{25})
Mahia ngā whakarea i roto o 2\times 4+2\times \left(-3i\right)-i\times 4-\left(-3\left(-1\right)\right).
Re(\frac{8-3+\left(-6-4\right)i}{25})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki 8-6i-4i-3.
Re(\frac{5-10i}{25})
Mahia ngā tāpiri i roto o 8-3+\left(-6-4\right)i.
Re(\frac{1}{5}-\frac{2}{5}i)
Whakawehea te 5-10i ki te 25, kia riro ko \frac{1}{5}-\frac{2}{5}i.
\frac{1}{5}
Ko te wāhi tūturu o \frac{1}{5}-\frac{2}{5}i ko \frac{1}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}