Aromātai
3\sqrt{2}-4\approx 0.242640687
Tauwehe
3 \sqrt{2} - 4 = 0.242640687
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{2-\sqrt{2}}{1+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 1-\sqrt{2}.
\frac{\left(2-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}
Pūrua 1. Pūrua \sqrt{2}.
\frac{\left(2-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{-1}
Tangohia te 2 i te 1, ka -1.
-\left(2-\sqrt{2}\right)\left(1-\sqrt{2}\right)
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
-\left(2-2\sqrt{2}-\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2-\sqrt{2} ki ia tau o 1-\sqrt{2}.
-\left(2-3\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Pahekotia te -2\sqrt{2} me -\sqrt{2}, ka -3\sqrt{2}.
-\left(2-3\sqrt{2}+2\right)
Ko te pūrua o \sqrt{2} ko 2.
-\left(4-3\sqrt{2}\right)
Tāpirihia te 2 ki te 2, ka 4.
-4-\left(-3\sqrt{2}\right)
Hei kimi i te tauaro o 4-3\sqrt{2}, kimihia te tauaro o ia taurangi.
-4+3\sqrt{2}
Ko te tauaro o -3\sqrt{2} ko 3\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}