Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{2-\sqrt{2}}{1+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 1-\sqrt{2}.
\frac{\left(2-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}
Pūrua 1. Pūrua \sqrt{2}.
\frac{\left(2-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{-1}
Tangohia te 2 i te 1, ka -1.
-\left(2-\sqrt{2}\right)\left(1-\sqrt{2}\right)
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
-\left(2-2\sqrt{2}-\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2-\sqrt{2} ki ia tau o 1-\sqrt{2}.
-\left(2-3\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Pahekotia te -2\sqrt{2} me -\sqrt{2}, ka -3\sqrt{2}.
-\left(2-3\sqrt{2}+2\right)
Ko te pūrua o \sqrt{2} ko 2.
-\left(4-3\sqrt{2}\right)
Tāpirihia te 2 ki te 2, ka 4.
-4-\left(-3\sqrt{2}\right)
Hei kimi i te tauaro o 4-3\sqrt{2}, kimihia te tauaro o ia taurangi.
-4+3\sqrt{2}
Ko te tauaro o -3\sqrt{2} ko 3\sqrt{2}.