Aromātai
\frac{10}{9}\approx 1.111111111
Tauwehe
\frac{2 \cdot 5}{3 ^ {2}} = 1\frac{1}{9} = 1.1111111111111112
Tohaina
Kua tāruatia ki te papatopenga
\frac{2-\frac{\frac{1}{2}-\frac{2}{2}}{1}}{2+\frac{\frac{1}{2}}{2}}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{2-\frac{\frac{1-2}{2}}{1}}{2+\frac{\frac{1}{2}}{2}}
Tā te mea he rite te tauraro o \frac{1}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{2-\frac{-\frac{1}{2}}{1}}{2+\frac{\frac{1}{2}}{2}}
Tangohia te 2 i te 1, ka -1.
\frac{2-\left(-\frac{1}{2}\right)}{2+\frac{\frac{1}{2}}{2}}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{2+\frac{1}{2}}{2+\frac{\frac{1}{2}}{2}}
Ko te tauaro o -\frac{1}{2} ko \frac{1}{2}.
\frac{\frac{4}{2}+\frac{1}{2}}{2+\frac{\frac{1}{2}}{2}}
Me tahuri te 2 ki te hautau \frac{4}{2}.
\frac{\frac{4+1}{2}}{2+\frac{\frac{1}{2}}{2}}
Tā te mea he rite te tauraro o \frac{4}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{5}{2}}{2+\frac{\frac{1}{2}}{2}}
Tāpirihia te 4 ki te 1, ka 5.
\frac{\frac{5}{2}}{2+\frac{1}{2\times 2}}
Tuhia te \frac{\frac{1}{2}}{2} hei hautanga kotahi.
\frac{\frac{5}{2}}{2+\frac{1}{4}}
Whakareatia te 2 ki te 2, ka 4.
\frac{\frac{5}{2}}{\frac{8}{4}+\frac{1}{4}}
Me tahuri te 2 ki te hautau \frac{8}{4}.
\frac{\frac{5}{2}}{\frac{8+1}{4}}
Tā te mea he rite te tauraro o \frac{8}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{5}{2}}{\frac{9}{4}}
Tāpirihia te 8 ki te 1, ka 9.
\frac{5}{2}\times \frac{4}{9}
Whakawehe \frac{5}{2} ki te \frac{9}{4} mā te whakarea \frac{5}{2} ki te tau huripoki o \frac{9}{4}.
\frac{5\times 4}{2\times 9}
Me whakarea te \frac{5}{2} ki te \frac{4}{9} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{20}{18}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 4}{2\times 9}.
\frac{10}{9}
Whakahekea te hautanga \frac{20}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}