Whakaoti mō m
m=-2
m=3
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 2 ( m - 6 ) ( m - 4 ) } { ( m - 2 ) ^ { 2 } } = 6
Tohaina
Kua tāruatia ki te papatopenga
2\left(m-6\right)\left(m-4\right)=6\left(m-2\right)^{2}
Tē taea kia ōrite te tāupe m ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(m-2\right)^{2}.
\left(2m-12\right)\left(m-4\right)=6\left(m-2\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te m-6.
2m^{2}-20m+48=6\left(m-2\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2m-12 ki te m-4 ka whakakotahi i ngā kupu rite.
2m^{2}-20m+48=6\left(m^{2}-4m+4\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(m-2\right)^{2}.
2m^{2}-20m+48=6m^{2}-24m+24
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te m^{2}-4m+4.
2m^{2}-20m+48-6m^{2}=-24m+24
Tangohia te 6m^{2} mai i ngā taha e rua.
-4m^{2}-20m+48=-24m+24
Pahekotia te 2m^{2} me -6m^{2}, ka -4m^{2}.
-4m^{2}-20m+48+24m=24
Me tāpiri te 24m ki ngā taha e rua.
-4m^{2}+4m+48=24
Pahekotia te -20m me 24m, ka 4m.
-4m^{2}+4m+48-24=0
Tangohia te 24 mai i ngā taha e rua.
-4m^{2}+4m+24=0
Tangohia te 24 i te 48, ka 24.
-m^{2}+m+6=0
Whakawehea ngā taha e rua ki te 4.
a+b=1 ab=-6=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -m^{2}+am+bm+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=3 b=-2
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(-m^{2}+3m\right)+\left(-2m+6\right)
Tuhia anō te -m^{2}+m+6 hei \left(-m^{2}+3m\right)+\left(-2m+6\right).
-m\left(m-3\right)-2\left(m-3\right)
Tauwehea te -m i te tuatahi me te -2 i te rōpū tuarua.
\left(m-3\right)\left(-m-2\right)
Whakatauwehea atu te kīanga pātahi m-3 mā te whakamahi i te āhuatanga tātai tohatoha.
m=3 m=-2
Hei kimi otinga whārite, me whakaoti te m-3=0 me te -m-2=0.
2\left(m-6\right)\left(m-4\right)=6\left(m-2\right)^{2}
Tē taea kia ōrite te tāupe m ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(m-2\right)^{2}.
\left(2m-12\right)\left(m-4\right)=6\left(m-2\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te m-6.
2m^{2}-20m+48=6\left(m-2\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2m-12 ki te m-4 ka whakakotahi i ngā kupu rite.
2m^{2}-20m+48=6\left(m^{2}-4m+4\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(m-2\right)^{2}.
2m^{2}-20m+48=6m^{2}-24m+24
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te m^{2}-4m+4.
2m^{2}-20m+48-6m^{2}=-24m+24
Tangohia te 6m^{2} mai i ngā taha e rua.
-4m^{2}-20m+48=-24m+24
Pahekotia te 2m^{2} me -6m^{2}, ka -4m^{2}.
-4m^{2}-20m+48+24m=24
Me tāpiri te 24m ki ngā taha e rua.
-4m^{2}+4m+48=24
Pahekotia te -20m me 24m, ka 4m.
-4m^{2}+4m+48-24=0
Tangohia te 24 mai i ngā taha e rua.
-4m^{2}+4m+24=0
Tangohia te 24 i te 48, ka 24.
m=\frac{-4±\sqrt{4^{2}-4\left(-4\right)\times 24}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 4 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-4±\sqrt{16-4\left(-4\right)\times 24}}{2\left(-4\right)}
Pūrua 4.
m=\frac{-4±\sqrt{16+16\times 24}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
m=\frac{-4±\sqrt{16+384}}{2\left(-4\right)}
Whakareatia 16 ki te 24.
m=\frac{-4±\sqrt{400}}{2\left(-4\right)}
Tāpiri 16 ki te 384.
m=\frac{-4±20}{2\left(-4\right)}
Tuhia te pūtakerua o te 400.
m=\frac{-4±20}{-8}
Whakareatia 2 ki te -4.
m=\frac{16}{-8}
Nā, me whakaoti te whārite m=\frac{-4±20}{-8} ina he tāpiri te ±. Tāpiri -4 ki te 20.
m=-2
Whakawehe 16 ki te -8.
m=-\frac{24}{-8}
Nā, me whakaoti te whārite m=\frac{-4±20}{-8} ina he tango te ±. Tango 20 mai i -4.
m=3
Whakawehe -24 ki te -8.
m=-2 m=3
Kua oti te whārite te whakatau.
2\left(m-6\right)\left(m-4\right)=6\left(m-2\right)^{2}
Tē taea kia ōrite te tāupe m ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(m-2\right)^{2}.
\left(2m-12\right)\left(m-4\right)=6\left(m-2\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te m-6.
2m^{2}-20m+48=6\left(m-2\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 2m-12 ki te m-4 ka whakakotahi i ngā kupu rite.
2m^{2}-20m+48=6\left(m^{2}-4m+4\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(m-2\right)^{2}.
2m^{2}-20m+48=6m^{2}-24m+24
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te m^{2}-4m+4.
2m^{2}-20m+48-6m^{2}=-24m+24
Tangohia te 6m^{2} mai i ngā taha e rua.
-4m^{2}-20m+48=-24m+24
Pahekotia te 2m^{2} me -6m^{2}, ka -4m^{2}.
-4m^{2}-20m+48+24m=24
Me tāpiri te 24m ki ngā taha e rua.
-4m^{2}+4m+48=24
Pahekotia te -20m me 24m, ka 4m.
-4m^{2}+4m=24-48
Tangohia te 48 mai i ngā taha e rua.
-4m^{2}+4m=-24
Tangohia te 48 i te 24, ka -24.
\frac{-4m^{2}+4m}{-4}=-\frac{24}{-4}
Whakawehea ngā taha e rua ki te -4.
m^{2}+\frac{4}{-4}m=-\frac{24}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
m^{2}-m=-\frac{24}{-4}
Whakawehe 4 ki te -4.
m^{2}-m=6
Whakawehe -24 ki te -4.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-m+\frac{1}{4}=6+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}-m+\frac{1}{4}=\frac{25}{4}
Tāpiri 6 ki te \frac{1}{4}.
\left(m-\frac{1}{2}\right)^{2}=\frac{25}{4}
Tauwehea m^{2}-m+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{1}{2}=\frac{5}{2} m-\frac{1}{2}=-\frac{5}{2}
Whakarūnātia.
m=3 m=-2
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}