Whakaoti mō x
x=-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\times 2\left(2x+3\right)+8x=5\times 3\left(x-2\right)-\left(5x-6\right)
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2,10.
4\left(2x+3\right)+8x=5\times 3\left(x-2\right)-\left(5x-6\right)
Whakareatia te 2 ki te 2, ka 4.
8x+12+8x=5\times 3\left(x-2\right)-\left(5x-6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x+3.
16x+12=5\times 3\left(x-2\right)-\left(5x-6\right)
Pahekotia te 8x me 8x, ka 16x.
16x+12=15\left(x-2\right)-\left(5x-6\right)
Whakareatia te 5 ki te 3, ka 15.
16x+12=15x-30-\left(5x-6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te x-2.
16x+12=15x-30-5x-\left(-6\right)
Hei kimi i te tauaro o 5x-6, kimihia te tauaro o ia taurangi.
16x+12=15x-30-5x+6
Ko te tauaro o -6 ko 6.
16x+12=10x-30+6
Pahekotia te 15x me -5x, ka 10x.
16x+12=10x-24
Tāpirihia te -30 ki te 6, ka -24.
16x+12-10x=-24
Tangohia te 10x mai i ngā taha e rua.
6x+12=-24
Pahekotia te 16x me -10x, ka 6x.
6x=-24-12
Tangohia te 12 mai i ngā taha e rua.
6x=-36
Tangohia te 12 i te -24, ka -36.
x=\frac{-36}{6}
Whakawehea ngā taha e rua ki te 6.
x=-6
Whakawehea te -36 ki te 6, kia riro ko -6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}