Aromātai
\frac{59}{3}\approx 19.666666667
Tauwehe
\frac{59}{3} = 19\frac{2}{3} = 19.666666666666668
Pātaitai
Arithmetic
\frac { 2 ( - 4 ) ^ { 2 } - 4 / 3 ( - 4 ) + 2 } { \frac { 1 } { 2 } ( - 4 ) + 4 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\times 16-\frac{4}{3}\left(-4\right)+2}{\frac{1}{2}\left(-4\right)+4}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
\frac{32-\frac{4}{3}\left(-4\right)+2}{\frac{1}{2}\left(-4\right)+4}
Whakareatia te 2 ki te 16, ka 32.
\frac{32-\frac{4\left(-4\right)}{3}+2}{\frac{1}{2}\left(-4\right)+4}
Tuhia te \frac{4}{3}\left(-4\right) hei hautanga kotahi.
\frac{32-\frac{-16}{3}+2}{\frac{1}{2}\left(-4\right)+4}
Whakareatia te 4 ki te -4, ka -16.
\frac{32-\left(-\frac{16}{3}\right)+2}{\frac{1}{2}\left(-4\right)+4}
Ka taea te hautanga \frac{-16}{3} te tuhi anō ko -\frac{16}{3} mā te tango i te tohu tōraro.
\frac{32+\frac{16}{3}+2}{\frac{1}{2}\left(-4\right)+4}
Ko te tauaro o -\frac{16}{3} ko \frac{16}{3}.
\frac{\frac{96}{3}+\frac{16}{3}+2}{\frac{1}{2}\left(-4\right)+4}
Me tahuri te 32 ki te hautau \frac{96}{3}.
\frac{\frac{96+16}{3}+2}{\frac{1}{2}\left(-4\right)+4}
Tā te mea he rite te tauraro o \frac{96}{3} me \frac{16}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{112}{3}+2}{\frac{1}{2}\left(-4\right)+4}
Tāpirihia te 96 ki te 16, ka 112.
\frac{\frac{112}{3}+\frac{6}{3}}{\frac{1}{2}\left(-4\right)+4}
Me tahuri te 2 ki te hautau \frac{6}{3}.
\frac{\frac{112+6}{3}}{\frac{1}{2}\left(-4\right)+4}
Tā te mea he rite te tauraro o \frac{112}{3} me \frac{6}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{118}{3}}{\frac{1}{2}\left(-4\right)+4}
Tāpirihia te 112 ki te 6, ka 118.
\frac{\frac{118}{3}}{\frac{-4}{2}+4}
Whakareatia te \frac{1}{2} ki te -4, ka \frac{-4}{2}.
\frac{\frac{118}{3}}{-2+4}
Whakawehea te -4 ki te 2, kia riro ko -2.
\frac{\frac{118}{3}}{2}
Tāpirihia te -2 ki te 4, ka 2.
\frac{118}{3\times 2}
Tuhia te \frac{\frac{118}{3}}{2} hei hautanga kotahi.
\frac{118}{6}
Whakareatia te 3 ki te 2, ka 6.
\frac{59}{3}
Whakahekea te hautanga \frac{118}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}