Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-5 me x+3 ko \left(x-5\right)\left(x+3\right). Whakareatia \frac{2}{x-5} ki te \frac{x+3}{x+3}. Whakareatia \frac{5}{x+3} ki te \frac{x-5}{x-5}.
\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
Tā te mea he rite te tauraro o \frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} me \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)}
Mahia ngā whakarea i roto o 2\left(x+3\right)-5\left(x-5\right).
\frac{-3x+31}{\left(x-5\right)\left(x+3\right)}
Whakakotahitia ngā kupu rite i 2x+6-5x+25.
\frac{-3x+31}{x^{2}-2x-15}
Whakarohaina te \left(x-5\right)\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-5 me x+3 ko \left(x-5\right)\left(x+3\right). Whakareatia \frac{2}{x-5} ki te \frac{x+3}{x+3}. Whakareatia \frac{5}{x+3} ki te \frac{x-5}{x-5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
Tā te mea he rite te tauraro o \frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} me \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)})
Mahia ngā whakarea i roto o 2\left(x+3\right)-5\left(x-5\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{\left(x-5\right)\left(x+3\right)})
Whakakotahitia ngā kupu rite i 2x+6-5x+25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}+3x-5x-15})
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x-5 ki ia tau o x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}-2x-15})
Pahekotia te 3x me -5x, ka -2x.
\frac{\left(x^{2}-2x^{1}-15\right)\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1}+31)-\left(-3x^{1}+31\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}-15)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{1-1}-\left(-3x^{1}+31\right)\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Whakarūnātia.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Whakareatia x^{2}-2x^{1}-15 ki te -3x^{0}.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}\times 2x^{1}-3x^{1}\left(-2\right)x^{0}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Whakareatia -3x^{1}+31 ki te 2x^{1}-2x^{0}.
\frac{-3x^{2}-2\left(-3\right)x^{1}-15\left(-3\right)x^{0}-\left(-3\times 2x^{1+1}-3\left(-2\right)x^{1}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-3x^{2}+6x^{1}+45x^{0}-\left(-6x^{2}+6x^{1}+62x^{1}-62x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Whakarūnātia.
\frac{3x^{2}-62x^{1}+107x^{0}}{\left(x^{2}-2x^{1}-15\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{3x^{2}-62x+107x^{0}}{\left(x^{2}-2x-15\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{3x^{2}-62x+107\times 1}{\left(x^{2}-2x-15\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{3x^{2}-62x+107}{\left(x^{2}-2x-15\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.