Aromātai
\frac{5x-4}{\left(x-2\right)\left(x+1\right)}
Kimi Pārōnaki e ai ki x
\frac{-5x^{2}+8x-14}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-2 me x+1 ko \left(x-2\right)\left(x+1\right). Whakareatia \frac{2}{x-2} ki te \frac{x+1}{x+1}. Whakareatia \frac{3}{x+1} ki te \frac{x-2}{x-2}.
\frac{2\left(x+1\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Tā te mea he rite te tauraro o \frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} me \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2x+2+3x-6}{\left(x-2\right)\left(x+1\right)}
Mahia ngā whakarea i roto o 2\left(x+1\right)+3\left(x-2\right).
\frac{5x-4}{\left(x-2\right)\left(x+1\right)}
Whakakotahitia ngā kupu rite i 2x+2+3x-6.
\frac{5x-4}{x^{2}-x-2}
Whakarohaina te \left(x-2\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x-2 me x+1 ko \left(x-2\right)\left(x+1\right). Whakareatia \frac{2}{x-2} ki te \frac{x+1}{x+1}. Whakareatia \frac{3}{x+1} ki te \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Tā te mea he rite te tauraro o \frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} me \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+2+3x-6}{\left(x-2\right)\left(x+1\right)})
Mahia ngā whakarea i roto o 2\left(x+1\right)+3\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{\left(x-2\right)\left(x+1\right)})
Whakakotahitia ngā kupu rite i 2x+2+3x-6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{x^{2}+x-2x-2})
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x-2 ki ia tau o x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{x^{2}-x-2})
Pahekotia te x me -2x, ka -x.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}-4)-\left(5x^{1}-4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{2}-x^{1}-2\right)\times 5x^{1-1}-\left(5x^{1}-4\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)\times 5x^{0}-\left(5x^{1}-4\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Whakarūnātia.
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-2\times 5x^{0}-\left(5x^{1}-4\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Whakareatia x^{2}-x^{1}-2 ki te 5x^{0}.
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-2\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}\left(-1\right)x^{0}-4\times 2x^{1}-4\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Whakareatia 5x^{1}-4 ki te 2x^{1}-x^{0}.
\frac{5x^{2}-5x^{1}-2\times 5x^{0}-\left(5\times 2x^{1+1}+5\left(-1\right)x^{1}-4\times 2x^{1}-4\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{5x^{2}-5x^{1}-10x^{0}-\left(10x^{2}-5x^{1}-8x^{1}+4x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Whakarūnātia.
\frac{-5x^{2}+8x^{1}-14x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-5x^{2}+8x-14x^{0}}{\left(x^{2}-x-2\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-5x^{2}+8x-14}{\left(x^{2}-x-2\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}