Whakaoti mō x
x=-\frac{2}{3}\approx -0.666666667
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\times 2+x\times 2=3x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+1.
2x+2+x\times 2=3x\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 2.
4x+2=3x\left(x+1\right)
Pahekotia te 2x me x\times 2, ka 4x.
4x+2=3x^{2}+3x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+1.
4x+2-3x^{2}=3x
Tangohia te 3x^{2} mai i ngā taha e rua.
4x+2-3x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x+2-3x^{2}=0
Pahekotia te 4x me -3x, ka x.
-3x^{2}+x+2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=1 ab=-3\times 2=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=3 b=-2
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(-3x^{2}+3x\right)+\left(-2x+2\right)
Tuhia anō te -3x^{2}+x+2 hei \left(-3x^{2}+3x\right)+\left(-2x+2\right).
3x\left(-x+1\right)+2\left(-x+1\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(-x+1\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te -x+1=0 me te 3x+2=0.
\left(x+1\right)\times 2+x\times 2=3x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+1.
2x+2+x\times 2=3x\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 2.
4x+2=3x\left(x+1\right)
Pahekotia te 2x me x\times 2, ka 4x.
4x+2=3x^{2}+3x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+1.
4x+2-3x^{2}=3x
Tangohia te 3x^{2} mai i ngā taha e rua.
4x+2-3x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x+2-3x^{2}=0
Pahekotia te 4x me -3x, ka x.
-3x^{2}+x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\left(-3\right)\times 2}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 1 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-3\right)\times 2}}{2\left(-3\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+12\times 2}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-1±\sqrt{1+24}}{2\left(-3\right)}
Whakareatia 12 ki te 2.
x=\frac{-1±\sqrt{25}}{2\left(-3\right)}
Tāpiri 1 ki te 24.
x=\frac{-1±5}{2\left(-3\right)}
Tuhia te pūtakerua o te 25.
x=\frac{-1±5}{-6}
Whakareatia 2 ki te -3.
x=\frac{4}{-6}
Nā, me whakaoti te whārite x=\frac{-1±5}{-6} ina he tāpiri te ±. Tāpiri -1 ki te 5.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{4}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{6}{-6}
Nā, me whakaoti te whārite x=\frac{-1±5}{-6} ina he tango te ±. Tango 5 mai i -1.
x=1
Whakawehe -6 ki te -6.
x=-\frac{2}{3} x=1
Kua oti te whārite te whakatau.
\left(x+1\right)\times 2+x\times 2=3x\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+1.
2x+2+x\times 2=3x\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 2.
4x+2=3x\left(x+1\right)
Pahekotia te 2x me x\times 2, ka 4x.
4x+2=3x^{2}+3x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+1.
4x+2-3x^{2}=3x
Tangohia te 3x^{2} mai i ngā taha e rua.
4x+2-3x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x+2-3x^{2}=0
Pahekotia te 4x me -3x, ka x.
x-3x^{2}=-2
Tangohia te 2 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-3x^{2}+x=-2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+x}{-3}=-\frac{2}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{1}{-3}x=-\frac{2}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-\frac{1}{3}x=-\frac{2}{-3}
Whakawehe 1 ki te -3.
x^{2}-\frac{1}{3}x=\frac{2}{3}
Whakawehe -2 ki te -3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
Whakawehea te -\frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{6}. Nā, tāpiria te pūrua o te -\frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
Pūruatia -\frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
Tāpiri \frac{2}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
Tauwehea x^{2}-\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
Whakarūnātia.
x=1 x=-\frac{2}{3}
Me tāpiri \frac{1}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}