Whakaoti mō x
x=-1
x=12
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+6\right)\times 2+x\times 15=x\left(x+6\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+6.
2x+12+x\times 15=x\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+6 ki te 2.
17x+12=x\left(x+6\right)
Pahekotia te 2x me x\times 15, ka 17x.
17x+12=x^{2}+6x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+6.
17x+12-x^{2}=6x
Tangohia te x^{2} mai i ngā taha e rua.
17x+12-x^{2}-6x=0
Tangohia te 6x mai i ngā taha e rua.
11x+12-x^{2}=0
Pahekotia te 17x me -6x, ka 11x.
-x^{2}+11x+12=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=11 ab=-12=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,12 -2,6 -3,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
-1+12=11 -2+6=4 -3+4=1
Tātaihia te tapeke mō ia takirua.
a=12 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(-x^{2}+12x\right)+\left(-x+12\right)
Tuhia anō te -x^{2}+11x+12 hei \left(-x^{2}+12x\right)+\left(-x+12\right).
-x\left(x-12\right)-\left(x-12\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-12\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi x-12 mā te whakamahi i te āhuatanga tātai tohatoha.
x=12 x=-1
Hei kimi otinga whārite, me whakaoti te x-12=0 me te -x-1=0.
\left(x+6\right)\times 2+x\times 15=x\left(x+6\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+6.
2x+12+x\times 15=x\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+6 ki te 2.
17x+12=x\left(x+6\right)
Pahekotia te 2x me x\times 15, ka 17x.
17x+12=x^{2}+6x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+6.
17x+12-x^{2}=6x
Tangohia te x^{2} mai i ngā taha e rua.
17x+12-x^{2}-6x=0
Tangohia te 6x mai i ngā taha e rua.
11x+12-x^{2}=0
Pahekotia te 17x me -6x, ka 11x.
-x^{2}+11x+12=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-11±\sqrt{11^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 11 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-1\right)\times 12}}{2\left(-1\right)}
Pūrua 11.
x=\frac{-11±\sqrt{121+4\times 12}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-11±\sqrt{121+48}}{2\left(-1\right)}
Whakareatia 4 ki te 12.
x=\frac{-11±\sqrt{169}}{2\left(-1\right)}
Tāpiri 121 ki te 48.
x=\frac{-11±13}{2\left(-1\right)}
Tuhia te pūtakerua o te 169.
x=\frac{-11±13}{-2}
Whakareatia 2 ki te -1.
x=\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{-11±13}{-2} ina he tāpiri te ±. Tāpiri -11 ki te 13.
x=-1
Whakawehe 2 ki te -2.
x=-\frac{24}{-2}
Nā, me whakaoti te whārite x=\frac{-11±13}{-2} ina he tango te ±. Tango 13 mai i -11.
x=12
Whakawehe -24 ki te -2.
x=-1 x=12
Kua oti te whārite te whakatau.
\left(x+6\right)\times 2+x\times 15=x\left(x+6\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -6,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+6.
2x+12+x\times 15=x\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+6 ki te 2.
17x+12=x\left(x+6\right)
Pahekotia te 2x me x\times 15, ka 17x.
17x+12=x^{2}+6x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+6.
17x+12-x^{2}=6x
Tangohia te x^{2} mai i ngā taha e rua.
17x+12-x^{2}-6x=0
Tangohia te 6x mai i ngā taha e rua.
11x+12-x^{2}=0
Pahekotia te 17x me -6x, ka 11x.
11x-x^{2}=-12
Tangohia te 12 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}+11x=-12
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+11x}{-1}=-\frac{12}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{11}{-1}x=-\frac{12}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-11x=-\frac{12}{-1}
Whakawehe 11 ki te -1.
x^{2}-11x=12
Whakawehe -12 ki te -1.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=12+\left(-\frac{11}{2}\right)^{2}
Whakawehea te -11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{2}. Nā, tāpiria te pūrua o te -\frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-11x+\frac{121}{4}=12+\frac{121}{4}
Pūruatia -\frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-11x+\frac{121}{4}=\frac{169}{4}
Tāpiri 12 ki te \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{169}{4}
Tauwehea x^{2}-11x+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{2}=\frac{13}{2} x-\frac{11}{2}=-\frac{13}{2}
Whakarūnātia.
x=12 x=-1
Me tāpiri \frac{11}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}