Whakaoti mō x
x=-13
Graph
Tohaina
Kua tāruatia ki te papatopenga
2+\left(x+3\right)\times 5=\left(x-3\right)\times 3
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-9,x-3,x+3.
2+5x+15=\left(x-3\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te x+3 ki te 5.
17+5x=\left(x-3\right)\times 3
Tāpirihia te 2 ki te 15, ka 17.
17+5x=3x-9
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 3.
17+5x-3x=-9
Tangohia te 3x mai i ngā taha e rua.
17+2x=-9
Pahekotia te 5x me -3x, ka 2x.
2x=-9-17
Tangohia te 17 mai i ngā taha e rua.
2x=-26
Tangohia te 17 i te -9, ka -26.
x=\frac{-26}{2}
Whakawehea ngā taha e rua ki te 2.
x=-13
Whakawehea te -26 ki te 2, kia riro ko -13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}