Whakaoti mō x
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+2\right)\left(x+1\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1,1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-3x+2,x^{2}+3x+2,x^{2}-4.
\left(x^{2}+3x+2\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+1 ka whakakotahi i ngā kupu rite.
2x^{2}+6x+4+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+3x+2 ki te 2.
2x^{2}+6x+4+x^{2}-3x+2=\left(x^{2}-1\right)\times 4
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x-1 ka whakakotahi i ngā kupu rite.
3x^{2}+6x+4-3x+2=\left(x^{2}-1\right)\times 4
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}+3x+4+2=\left(x^{2}-1\right)\times 4
Pahekotia te 6x me -3x, ka 3x.
3x^{2}+3x+6=\left(x^{2}-1\right)\times 4
Tāpirihia te 4 ki te 2, ka 6.
3x^{2}+3x+6=4x^{2}-4
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-1 ki te 4.
3x^{2}+3x+6-4x^{2}=-4
Tangohia te 4x^{2} mai i ngā taha e rua.
-x^{2}+3x+6=-4
Pahekotia te 3x^{2} me -4x^{2}, ka -x^{2}.
-x^{2}+3x+6+4=0
Me tāpiri te 4 ki ngā taha e rua.
-x^{2}+3x+10=0
Tāpirihia te 6 ki te 4, ka 10.
a+b=3 ab=-10=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,10 -2,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
-1+10=9 -2+5=3
Tātaihia te tapeke mō ia takirua.
a=5 b=-2
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(-x^{2}+5x\right)+\left(-2x+10\right)
Tuhia anō te -x^{2}+3x+10 hei \left(-x^{2}+5x\right)+\left(-2x+10\right).
-x\left(x-5\right)-2\left(x-5\right)
Tauwehea te -x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-5\right)\left(-x-2\right)
Whakatauwehea atu te kīanga pātahi x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=5 x=-2
Hei kimi otinga whārite, me whakaoti te x-5=0 me te -x-2=0.
x=5
Tē taea kia ōrite te tāupe x ki -2.
\left(x+2\right)\left(x+1\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1,1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-3x+2,x^{2}+3x+2,x^{2}-4.
\left(x^{2}+3x+2\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+1 ka whakakotahi i ngā kupu rite.
2x^{2}+6x+4+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+3x+2 ki te 2.
2x^{2}+6x+4+x^{2}-3x+2=\left(x^{2}-1\right)\times 4
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x-1 ka whakakotahi i ngā kupu rite.
3x^{2}+6x+4-3x+2=\left(x^{2}-1\right)\times 4
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}+3x+4+2=\left(x^{2}-1\right)\times 4
Pahekotia te 6x me -3x, ka 3x.
3x^{2}+3x+6=\left(x^{2}-1\right)\times 4
Tāpirihia te 4 ki te 2, ka 6.
3x^{2}+3x+6=4x^{2}-4
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-1 ki te 4.
3x^{2}+3x+6-4x^{2}=-4
Tangohia te 4x^{2} mai i ngā taha e rua.
-x^{2}+3x+6=-4
Pahekotia te 3x^{2} me -4x^{2}, ka -x^{2}.
-x^{2}+3x+6+4=0
Me tāpiri te 4 ki ngā taha e rua.
-x^{2}+3x+10=0
Tāpirihia te 6 ki te 4, ka 10.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 3 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 10}}{2\left(-1\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+4\times 10}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-3±\sqrt{9+40}}{2\left(-1\right)}
Whakareatia 4 ki te 10.
x=\frac{-3±\sqrt{49}}{2\left(-1\right)}
Tāpiri 9 ki te 40.
x=\frac{-3±7}{2\left(-1\right)}
Tuhia te pūtakerua o te 49.
x=\frac{-3±7}{-2}
Whakareatia 2 ki te -1.
x=\frac{4}{-2}
Nā, me whakaoti te whārite x=\frac{-3±7}{-2} ina he tāpiri te ±. Tāpiri -3 ki te 7.
x=-2
Whakawehe 4 ki te -2.
x=-\frac{10}{-2}
Nā, me whakaoti te whārite x=\frac{-3±7}{-2} ina he tango te ±. Tango 7 mai i -3.
x=5
Whakawehe -10 ki te -2.
x=-2 x=5
Kua oti te whārite te whakatau.
x=5
Tē taea kia ōrite te tāupe x ki -2.
\left(x+2\right)\left(x+1\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1,1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-3x+2,x^{2}+3x+2,x^{2}-4.
\left(x^{2}+3x+2\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Whakamahia te āhuatanga tuaritanga hei whakarea te x+2 ki te x+1 ka whakakotahi i ngā kupu rite.
2x^{2}+6x+4+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+3x+2 ki te 2.
2x^{2}+6x+4+x^{2}-3x+2=\left(x^{2}-1\right)\times 4
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x-1 ka whakakotahi i ngā kupu rite.
3x^{2}+6x+4-3x+2=\left(x^{2}-1\right)\times 4
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}+3x+4+2=\left(x^{2}-1\right)\times 4
Pahekotia te 6x me -3x, ka 3x.
3x^{2}+3x+6=\left(x^{2}-1\right)\times 4
Tāpirihia te 4 ki te 2, ka 6.
3x^{2}+3x+6=4x^{2}-4
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-1 ki te 4.
3x^{2}+3x+6-4x^{2}=-4
Tangohia te 4x^{2} mai i ngā taha e rua.
-x^{2}+3x+6=-4
Pahekotia te 3x^{2} me -4x^{2}, ka -x^{2}.
-x^{2}+3x=-4-6
Tangohia te 6 mai i ngā taha e rua.
-x^{2}+3x=-10
Tangohia te 6 i te -4, ka -10.
\frac{-x^{2}+3x}{-1}=-\frac{10}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{3}{-1}x=-\frac{10}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-3x=-\frac{10}{-1}
Whakawehe 3 ki te -1.
x^{2}-3x=10
Whakawehe -10 ki te -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=10+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{49}{4}
Tāpiri 10 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{49}{4}
Tauwehea te x^{2}-3x+\frac{9}{4}. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{7}{2} x-\frac{3}{2}=-\frac{7}{2}
Whakarūnātia.
x=5 x=-2
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
x=5
Tē taea kia ōrite te tāupe x ki -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}