Whakaoti mō x
x = -\frac{13}{7} = -1\frac{6}{7} \approx -1.857142857
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(x-2\right)\left(x+1\right)\times 2-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-2\right)\left(x-1\right)\left(x+1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-1,x^{2}-3x+2,3x^{2}+6x+3.
\left(3x-6\right)\left(x+1\right)\times 2-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
\left(3x^{2}-3x-6\right)\times 2-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-6 ki te x+1 ka whakakotahi i ngā kupu rite.
6x^{2}-6x-12-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x^{2}-3x-6 ki te 2.
6x^{2}-6x-12-3\left(x^{2}+2x+1\right)\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
6x^{2}-6x-12-12\left(x^{2}+2x+1\right)=\left(x-2\right)\left(x-1\right)
Whakareatia te 3 ki te 4, ka 12.
6x^{2}-6x-12-\left(12x^{2}+24x+12\right)=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te x^{2}+2x+1.
6x^{2}-6x-12-12x^{2}-24x-12=\left(x-2\right)\left(x-1\right)
Hei kimi i te tauaro o 12x^{2}+24x+12, kimihia te tauaro o ia taurangi.
-6x^{2}-6x-12-24x-12=\left(x-2\right)\left(x-1\right)
Pahekotia te 6x^{2} me -12x^{2}, ka -6x^{2}.
-6x^{2}-30x-12-12=\left(x-2\right)\left(x-1\right)
Pahekotia te -6x me -24x, ka -30x.
-6x^{2}-30x-24=\left(x-2\right)\left(x-1\right)
Tangohia te 12 i te -12, ka -24.
-6x^{2}-30x-24=x^{2}-3x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x-1 ka whakakotahi i ngā kupu rite.
-6x^{2}-30x-24-x^{2}=-3x+2
Tangohia te x^{2} mai i ngā taha e rua.
-7x^{2}-30x-24=-3x+2
Pahekotia te -6x^{2} me -x^{2}, ka -7x^{2}.
-7x^{2}-30x-24+3x=2
Me tāpiri te 3x ki ngā taha e rua.
-7x^{2}-27x-24=2
Pahekotia te -30x me 3x, ka -27x.
-7x^{2}-27x-24-2=0
Tangohia te 2 mai i ngā taha e rua.
-7x^{2}-27x-26=0
Tangohia te 2 i te -24, ka -26.
a+b=-27 ab=-7\left(-26\right)=182
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -7x^{2}+ax+bx-26. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-182 -2,-91 -7,-26 -13,-14
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 182.
-1-182=-183 -2-91=-93 -7-26=-33 -13-14=-27
Tātaihia te tapeke mō ia takirua.
a=-13 b=-14
Ko te otinga te takirua ka hoatu i te tapeke -27.
\left(-7x^{2}-13x\right)+\left(-14x-26\right)
Tuhia anō te -7x^{2}-27x-26 hei \left(-7x^{2}-13x\right)+\left(-14x-26\right).
-x\left(7x+13\right)-2\left(7x+13\right)
Tauwehea te -x i te tuatahi me te -2 i te rōpū tuarua.
\left(7x+13\right)\left(-x-2\right)
Whakatauwehea atu te kīanga pātahi 7x+13 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{13}{7} x=-2
Hei kimi otinga whārite, me whakaoti te 7x+13=0 me te -x-2=0.
3\left(x-2\right)\left(x+1\right)\times 2-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-2\right)\left(x-1\right)\left(x+1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-1,x^{2}-3x+2,3x^{2}+6x+3.
\left(3x-6\right)\left(x+1\right)\times 2-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
\left(3x^{2}-3x-6\right)\times 2-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-6 ki te x+1 ka whakakotahi i ngā kupu rite.
6x^{2}-6x-12-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x^{2}-3x-6 ki te 2.
6x^{2}-6x-12-3\left(x^{2}+2x+1\right)\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
6x^{2}-6x-12-12\left(x^{2}+2x+1\right)=\left(x-2\right)\left(x-1\right)
Whakareatia te 3 ki te 4, ka 12.
6x^{2}-6x-12-\left(12x^{2}+24x+12\right)=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te x^{2}+2x+1.
6x^{2}-6x-12-12x^{2}-24x-12=\left(x-2\right)\left(x-1\right)
Hei kimi i te tauaro o 12x^{2}+24x+12, kimihia te tauaro o ia taurangi.
-6x^{2}-6x-12-24x-12=\left(x-2\right)\left(x-1\right)
Pahekotia te 6x^{2} me -12x^{2}, ka -6x^{2}.
-6x^{2}-30x-12-12=\left(x-2\right)\left(x-1\right)
Pahekotia te -6x me -24x, ka -30x.
-6x^{2}-30x-24=\left(x-2\right)\left(x-1\right)
Tangohia te 12 i te -12, ka -24.
-6x^{2}-30x-24=x^{2}-3x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x-1 ka whakakotahi i ngā kupu rite.
-6x^{2}-30x-24-x^{2}=-3x+2
Tangohia te x^{2} mai i ngā taha e rua.
-7x^{2}-30x-24=-3x+2
Pahekotia te -6x^{2} me -x^{2}, ka -7x^{2}.
-7x^{2}-30x-24+3x=2
Me tāpiri te 3x ki ngā taha e rua.
-7x^{2}-27x-24=2
Pahekotia te -30x me 3x, ka -27x.
-7x^{2}-27x-24-2=0
Tangohia te 2 mai i ngā taha e rua.
-7x^{2}-27x-26=0
Tangohia te 2 i te -24, ka -26.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\left(-7\right)\left(-26\right)}}{2\left(-7\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -7 mō a, -27 mō b, me -26 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-27\right)±\sqrt{729-4\left(-7\right)\left(-26\right)}}{2\left(-7\right)}
Pūrua -27.
x=\frac{-\left(-27\right)±\sqrt{729+28\left(-26\right)}}{2\left(-7\right)}
Whakareatia -4 ki te -7.
x=\frac{-\left(-27\right)±\sqrt{729-728}}{2\left(-7\right)}
Whakareatia 28 ki te -26.
x=\frac{-\left(-27\right)±\sqrt{1}}{2\left(-7\right)}
Tāpiri 729 ki te -728.
x=\frac{-\left(-27\right)±1}{2\left(-7\right)}
Tuhia te pūtakerua o te 1.
x=\frac{27±1}{2\left(-7\right)}
Ko te tauaro o -27 ko 27.
x=\frac{27±1}{-14}
Whakareatia 2 ki te -7.
x=\frac{28}{-14}
Nā, me whakaoti te whārite x=\frac{27±1}{-14} ina he tāpiri te ±. Tāpiri 27 ki te 1.
x=-2
Whakawehe 28 ki te -14.
x=\frac{26}{-14}
Nā, me whakaoti te whārite x=\frac{27±1}{-14} ina he tango te ±. Tango 1 mai i 27.
x=-\frac{13}{7}
Whakahekea te hautanga \frac{26}{-14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-2 x=-\frac{13}{7}
Kua oti te whārite te whakatau.
3\left(x-2\right)\left(x+1\right)\times 2-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(x-2\right)\left(x-1\right)\left(x+1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-1,x^{2}-3x+2,3x^{2}+6x+3.
\left(3x-6\right)\left(x+1\right)\times 2-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
\left(3x^{2}-3x-6\right)\times 2-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-6 ki te x+1 ka whakakotahi i ngā kupu rite.
6x^{2}-6x-12-3\left(x+1\right)^{2}\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3x^{2}-3x-6 ki te 2.
6x^{2}-6x-12-3\left(x^{2}+2x+1\right)\times 4=\left(x-2\right)\left(x-1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
6x^{2}-6x-12-12\left(x^{2}+2x+1\right)=\left(x-2\right)\left(x-1\right)
Whakareatia te 3 ki te 4, ka 12.
6x^{2}-6x-12-\left(12x^{2}+24x+12\right)=\left(x-2\right)\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te x^{2}+2x+1.
6x^{2}-6x-12-12x^{2}-24x-12=\left(x-2\right)\left(x-1\right)
Hei kimi i te tauaro o 12x^{2}+24x+12, kimihia te tauaro o ia taurangi.
-6x^{2}-6x-12-24x-12=\left(x-2\right)\left(x-1\right)
Pahekotia te 6x^{2} me -12x^{2}, ka -6x^{2}.
-6x^{2}-30x-12-12=\left(x-2\right)\left(x-1\right)
Pahekotia te -6x me -24x, ka -30x.
-6x^{2}-30x-24=\left(x-2\right)\left(x-1\right)
Tangohia te 12 i te -12, ka -24.
-6x^{2}-30x-24=x^{2}-3x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x-1 ka whakakotahi i ngā kupu rite.
-6x^{2}-30x-24-x^{2}=-3x+2
Tangohia te x^{2} mai i ngā taha e rua.
-7x^{2}-30x-24=-3x+2
Pahekotia te -6x^{2} me -x^{2}, ka -7x^{2}.
-7x^{2}-30x-24+3x=2
Me tāpiri te 3x ki ngā taha e rua.
-7x^{2}-27x-24=2
Pahekotia te -30x me 3x, ka -27x.
-7x^{2}-27x=2+24
Me tāpiri te 24 ki ngā taha e rua.
-7x^{2}-27x=26
Tāpirihia te 2 ki te 24, ka 26.
\frac{-7x^{2}-27x}{-7}=\frac{26}{-7}
Whakawehea ngā taha e rua ki te -7.
x^{2}+\left(-\frac{27}{-7}\right)x=\frac{26}{-7}
Mā te whakawehe ki te -7 ka wetekia te whakareanga ki te -7.
x^{2}+\frac{27}{7}x=\frac{26}{-7}
Whakawehe -27 ki te -7.
x^{2}+\frac{27}{7}x=-\frac{26}{7}
Whakawehe 26 ki te -7.
x^{2}+\frac{27}{7}x+\left(\frac{27}{14}\right)^{2}=-\frac{26}{7}+\left(\frac{27}{14}\right)^{2}
Whakawehea te \frac{27}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{27}{14}. Nā, tāpiria te pūrua o te \frac{27}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{27}{7}x+\frac{729}{196}=-\frac{26}{7}+\frac{729}{196}
Pūruatia \frac{27}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{27}{7}x+\frac{729}{196}=\frac{1}{196}
Tāpiri -\frac{26}{7} ki te \frac{729}{196} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{27}{14}\right)^{2}=\frac{1}{196}
Tauwehea x^{2}+\frac{27}{7}x+\frac{729}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{27}{14}\right)^{2}}=\sqrt{\frac{1}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{27}{14}=\frac{1}{14} x+\frac{27}{14}=-\frac{1}{14}
Whakarūnātia.
x=-\frac{13}{7} x=-2
Me tango \frac{27}{14} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}