Whakaoti mō x (complex solution)
x\in \mathrm{C}\setminus -1,1,-i,i
Whakaoti mō x
x\in \mathrm{R}\setminus 1,-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x^{2}+1\right)\times 2-\left(x^{2}-1\right)\times 2=4
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,-i,i,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right)\left(x-i\right)\left(x+i\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-1,x^{2}+1,x^{4}-1.
2x^{2}+2-\left(x^{2}-1\right)\times 2=4
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+1 ki te 2.
2x^{2}+2-\left(2x^{2}-2\right)=4
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-1 ki te 2.
2x^{2}+2-2x^{2}+2=4
Hei kimi i te tauaro o 2x^{2}-2, kimihia te tauaro o ia taurangi.
2+2=4
Pahekotia te 2x^{2} me -2x^{2}, ka 0.
4=4
Tāpirihia te 2 ki te 2, ka 4.
\text{true}
Whakatauritea te 4 me te 4.
x\in \mathrm{C}
He pono tēnei mō tētahi x ahakoa.
x\in \mathrm{C}\setminus -i,i,-1,1
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -i,i,-1,1.
\left(x^{2}+1\right)\times 2-\left(x^{2}-1\right)\times 2=4
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right)\left(x^{2}+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-1,x^{2}+1,x^{4}-1.
2x^{2}+2-\left(x^{2}-1\right)\times 2=4
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+1 ki te 2.
2x^{2}+2-\left(2x^{2}-2\right)=4
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-1 ki te 2.
2x^{2}+2-2x^{2}+2=4
Hei kimi i te tauaro o 2x^{2}-2, kimihia te tauaro o ia taurangi.
2+2=4
Pahekotia te 2x^{2} me -2x^{2}, ka 0.
4=4
Tāpirihia te 2 ki te 2, ka 4.
\text{true}
Whakatauritea te 4 me te 4.
x\in \mathrm{R}
He pono tēnei mō tētahi x ahakoa.
x\in \mathrm{R}\setminus -1,1
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}