Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-1\right)\times 2+x+1=\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x-1.
2x-2+x+1=\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
3x-2+1=\left(x-1\right)\left(x+1\right)
Pahekotia te 2x me x, ka 3x.
3x-1=\left(x-1\right)\left(x+1\right)
Tāpirihia te -2 ki te 1, ka -1.
3x-1=x^{2}-1
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
3x-1-x^{2}=-1
Tangohia te x^{2} mai i ngā taha e rua.
3x-1-x^{2}+1=0
Me tāpiri te 1 ki ngā taha e rua.
3x-x^{2}=0
Tāpirihia te -1 ki te 1, ka 0.
-x^{2}+3x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±3}{2\left(-1\right)}
Tuhia te pūtakerua o te 3^{2}.
x=\frac{-3±3}{-2}
Whakareatia 2 ki te -1.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{-3±3}{-2} ina he tāpiri te ±. Tāpiri -3 ki te 3.
x=0
Whakawehe 0 ki te -2.
x=-\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{-3±3}{-2} ina he tango te ±. Tango 3 mai i -3.
x=3
Whakawehe -6 ki te -2.
x=0 x=3
Kua oti te whārite te whakatau.
\left(x-1\right)\times 2+x+1=\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x-1.
2x-2+x+1=\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
3x-2+1=\left(x-1\right)\left(x+1\right)
Pahekotia te 2x me x, ka 3x.
3x-1=\left(x-1\right)\left(x+1\right)
Tāpirihia te -2 ki te 1, ka -1.
3x-1=x^{2}-1
Whakaarohia te \left(x-1\right)\left(x+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
3x-1-x^{2}=-1
Tangohia te x^{2} mai i ngā taha e rua.
3x-x^{2}=-1+1
Me tāpiri te 1 ki ngā taha e rua.
3x-x^{2}=0
Tāpirihia te -1 ki te 1, ka 0.
-x^{2}+3x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+3x}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{3}{-1}x=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-3x=\frac{0}{-1}
Whakawehe 3 ki te -1.
x^{2}-3x=0
Whakawehe 0 ki te -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Whakarūnātia.
x=3 x=0
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.