Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki s
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(s+\sqrt{2}\right)}{\left(s-\sqrt{2}\right)\left(s+\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{2}{s-\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te s+\sqrt{2}.
\frac{2\left(s+\sqrt{2}\right)}{s^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(s-\sqrt{2}\right)\left(s+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(s+\sqrt{2}\right)}{s^{2}-2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2s+2\sqrt{2}}{s^{2}-2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te s+\sqrt{2}.