Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(n+2\right)}{n\left(n+2\right)}-\frac{\left(h-1\right)n}{n\left(n+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n me n+2 ko n\left(n+2\right). Whakareatia \frac{2}{n} ki te \frac{n+2}{n+2}. Whakareatia \frac{h-1}{n+2} ki te \frac{n}{n}.
\frac{2\left(n+2\right)-\left(h-1\right)n}{n\left(n+2\right)}
Tā te mea he rite te tauraro o \frac{2\left(n+2\right)}{n\left(n+2\right)} me \frac{\left(h-1\right)n}{n\left(n+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2n+4-hn+n}{n\left(n+2\right)}
Mahia ngā whakarea i roto o 2\left(n+2\right)-\left(h-1\right)n.
\frac{3n+4-hn}{n\left(n+2\right)}
Whakakotahitia ngā kupu rite i 2n+4-hn+n.
\frac{3n+4-hn}{n^{2}+2n}
Whakarohaina te n\left(n+2\right).
\frac{2\left(n+2\right)}{n\left(n+2\right)}-\frac{\left(h-1\right)n}{n\left(n+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n me n+2 ko n\left(n+2\right). Whakareatia \frac{2}{n} ki te \frac{n+2}{n+2}. Whakareatia \frac{h-1}{n+2} ki te \frac{n}{n}.
\frac{2\left(n+2\right)-\left(h-1\right)n}{n\left(n+2\right)}
Tā te mea he rite te tauraro o \frac{2\left(n+2\right)}{n\left(n+2\right)} me \frac{\left(h-1\right)n}{n\left(n+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2n+4-hn+n}{n\left(n+2\right)}
Mahia ngā whakarea i roto o 2\left(n+2\right)-\left(h-1\right)n.
\frac{3n+4-hn}{n\left(n+2\right)}
Whakakotahitia ngā kupu rite i 2n+4-hn+n.
\frac{3n+4-hn}{n^{2}+2n}
Whakarohaina te n\left(n+2\right).