Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n me n+1 ko n\left(n+1\right). Whakareatia \frac{2}{n} ki te \frac{n+1}{n+1}. Whakareatia \frac{1}{n+1} ki te \frac{n}{n}.
\frac{2\left(n+1\right)-n}{n\left(n+1\right)}
Tā te mea he rite te tauraro o \frac{2\left(n+1\right)}{n\left(n+1\right)} me \frac{n}{n\left(n+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2n+2-n}{n\left(n+1\right)}
Mahia ngā whakarea i roto o 2\left(n+1\right)-n.
\frac{n+2}{n\left(n+1\right)}
Whakakotahitia ngā kupu rite i 2n+2-n.
\frac{n+2}{n^{2}+n}
Whakarohaina te n\left(n+1\right).
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{2\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o n me n+1 ko n\left(n+1\right). Whakareatia \frac{2}{n} ki te \frac{n+1}{n+1}. Whakareatia \frac{1}{n+1} ki te \frac{n}{n}.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{2\left(n+1\right)-n}{n\left(n+1\right)})
Tā te mea he rite te tauraro o \frac{2\left(n+1\right)}{n\left(n+1\right)} me \frac{n}{n\left(n+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{2n+2-n}{n\left(n+1\right)})
Mahia ngā whakarea i roto o 2\left(n+1\right)-n.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+2}{n\left(n+1\right)})
Whakakotahitia ngā kupu rite i 2n+2-n.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{n+2}{n^{2}+n})
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te n+1.
\frac{\left(n^{2}+n^{1}\right)\frac{\mathrm{d}}{\mathrm{d}n}(n^{1}+2)-\left(n^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}+n^{1})}{\left(n^{2}+n^{1}\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(n^{2}+n^{1}\right)n^{1-1}-\left(n^{1}+2\right)\left(2n^{2-1}+n^{1-1}\right)}{\left(n^{2}+n^{1}\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(n^{2}+n^{1}\right)n^{0}-\left(n^{1}+2\right)\left(2n^{1}+n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
Whakarūnātia.
\frac{n^{2}n^{0}+n^{1}n^{0}-\left(n^{1}+2\right)\left(2n^{1}+n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
Whakareatia n^{2}+n^{1} ki te n^{0}.
\frac{n^{2}n^{0}+n^{1}n^{0}-\left(n^{1}\times 2n^{1}+n^{1}n^{0}+2\times 2n^{1}+2n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
Whakareatia n^{1}+2 ki te 2n^{1}+n^{0}.
\frac{n^{2}+n^{1}-\left(2n^{1+1}+n^{1}+2\times 2n^{1}+2n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{n^{2}+n^{1}-\left(2n^{2}+n^{1}+4n^{1}+2n^{0}\right)}{\left(n^{2}+n^{1}\right)^{2}}
Whakarūnātia.
\frac{-n^{2}-4n^{1}-2n^{0}}{\left(n^{2}+n^{1}\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-n^{2}-4n-2n^{0}}{\left(n^{2}+n\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-n^{2}-4n-2}{\left(n^{2}+n\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.