Aromātai
\frac{8-a}{\left(a-4\right)\left(a-2\right)}
Kimi Pārōnaki e ai ki a
\frac{a^{2}-16a+40}{a^{4}-12a^{3}+52a^{2}-96a+64}
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\left(a-2\right)}{\left(a-4\right)\left(a-2\right)}-\frac{3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-4 me a-2 ko \left(a-4\right)\left(a-2\right). Whakareatia \frac{2}{a-4} ki te \frac{a-2}{a-2}. Whakareatia \frac{3}{a-2} ki te \frac{a-4}{a-4}.
\frac{2\left(a-2\right)-3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)}
Tā te mea he rite te tauraro o \frac{2\left(a-2\right)}{\left(a-4\right)\left(a-2\right)} me \frac{3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2a-4-3a+12}{\left(a-4\right)\left(a-2\right)}
Mahia ngā whakarea i roto o 2\left(a-2\right)-3\left(a-4\right).
\frac{-a+8}{\left(a-4\right)\left(a-2\right)}
Whakakotahitia ngā kupu rite i 2a-4-3a+12.
\frac{-a+8}{a^{2}-6a+8}
Whakarohaina te \left(a-4\right)\left(a-2\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(a-2\right)}{\left(a-4\right)\left(a-2\right)}-\frac{3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)})
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-4 me a-2 ko \left(a-4\right)\left(a-2\right). Whakareatia \frac{2}{a-4} ki te \frac{a-2}{a-2}. Whakareatia \frac{3}{a-2} ki te \frac{a-4}{a-4}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2\left(a-2\right)-3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)})
Tā te mea he rite te tauraro o \frac{2\left(a-2\right)}{\left(a-4\right)\left(a-2\right)} me \frac{3\left(a-4\right)}{\left(a-4\right)\left(a-2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{2a-4-3a+12}{\left(a-4\right)\left(a-2\right)})
Mahia ngā whakarea i roto o 2\left(a-2\right)-3\left(a-4\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a+8}{\left(a-4\right)\left(a-2\right)})
Whakakotahitia ngā kupu rite i 2a-4-3a+12.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a+8}{a^{2}-2a-4a+8})
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o a-4 ki ia tau o a-2.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-a+8}{a^{2}-6a+8})
Pahekotia te -2a me -4a, ka -6a.
\frac{\left(a^{2}-6a^{1}+8\right)\frac{\mathrm{d}}{\mathrm{d}a}(-a^{1}+8)-\left(-a^{1}+8\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-6a^{1}+8)}{\left(a^{2}-6a^{1}+8\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(a^{2}-6a^{1}+8\right)\left(-1\right)a^{1-1}-\left(-a^{1}+8\right)\left(2a^{2-1}-6a^{1-1}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(a^{2}-6a^{1}+8\right)\left(-1\right)a^{0}-\left(-a^{1}+8\right)\left(2a^{1}-6a^{0}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
Whakarūnātia.
\frac{a^{2}\left(-1\right)a^{0}-6a^{1}\left(-1\right)a^{0}+8\left(-1\right)a^{0}-\left(-a^{1}+8\right)\left(2a^{1}-6a^{0}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
Whakareatia a^{2}-6a^{1}+8 ki te -a^{0}.
\frac{a^{2}\left(-1\right)a^{0}-6a^{1}\left(-1\right)a^{0}+8\left(-1\right)a^{0}-\left(-a^{1}\times 2a^{1}-a^{1}\left(-6\right)a^{0}+8\times 2a^{1}+8\left(-6\right)a^{0}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
Whakareatia -a^{1}+8 ki te 2a^{1}-6a^{0}.
\frac{-a^{2}-6\left(-1\right)a^{1}+8\left(-1\right)a^{0}-\left(-2a^{1+1}-\left(-6a^{1}\right)+8\times 2a^{1}+8\left(-6\right)a^{0}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{-a^{2}+6a^{1}-8a^{0}-\left(-2a^{2}+6a^{1}+16a^{1}-48a^{0}\right)}{\left(a^{2}-6a^{1}+8\right)^{2}}
Whakarūnātia.
\frac{a^{2}-16a^{1}+40a^{0}}{\left(a^{2}-6a^{1}+8\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{a^{2}-16a+40a^{0}}{\left(a^{2}-6a+8\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{a^{2}-16a+40\times 1}{\left(a^{2}-6a+8\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{a^{2}-16a+40}{\left(a^{2}-6a+8\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}