Aromātai
\frac{9}{8}=1.125
Tauwehe
\frac{3 ^ {2}}{2 ^ {3}} = 1\frac{1}{8} = 1.125
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}\left(1-\frac{3}{2}\right)-\frac{\frac{1}{2}}{-\frac{2}{5}}
Whakahekea te hautanga \frac{2}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{4}\left(\frac{2}{2}-\frac{3}{2}\right)-\frac{\frac{1}{2}}{-\frac{2}{5}}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{1}{4}\times \frac{2-3}{2}-\frac{\frac{1}{2}}{-\frac{2}{5}}
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{3}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{4}\left(-\frac{1}{2}\right)-\frac{\frac{1}{2}}{-\frac{2}{5}}
Tangohia te 3 i te 2, ka -1.
\frac{1\left(-1\right)}{4\times 2}-\frac{\frac{1}{2}}{-\frac{2}{5}}
Me whakarea te \frac{1}{4} ki te -\frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-1}{8}-\frac{\frac{1}{2}}{-\frac{2}{5}}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-1\right)}{4\times 2}.
-\frac{1}{8}-\frac{\frac{1}{2}}{-\frac{2}{5}}
Ka taea te hautanga \frac{-1}{8} te tuhi anō ko -\frac{1}{8} mā te tango i te tohu tōraro.
-\frac{1}{8}-\frac{1}{2}\left(-\frac{5}{2}\right)
Whakawehe \frac{1}{2} ki te -\frac{2}{5} mā te whakarea \frac{1}{2} ki te tau huripoki o -\frac{2}{5}.
-\frac{1}{8}-\frac{1\left(-5\right)}{2\times 2}
Me whakarea te \frac{1}{2} ki te -\frac{5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{1}{8}-\frac{-5}{4}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-5\right)}{2\times 2}.
-\frac{1}{8}-\left(-\frac{5}{4}\right)
Ka taea te hautanga \frac{-5}{4} te tuhi anō ko -\frac{5}{4} mā te tango i te tohu tōraro.
-\frac{1}{8}+\frac{5}{4}
Ko te tauaro o -\frac{5}{4} ko \frac{5}{4}.
-\frac{1}{8}+\frac{10}{8}
Ko te maha noa iti rawa atu o 8 me 4 ko 8. Me tahuri -\frac{1}{8} me \frac{5}{4} ki te hautau me te tautūnga 8.
\frac{-1+10}{8}
Tā te mea he rite te tauraro o -\frac{1}{8} me \frac{10}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{8}
Tāpirihia te -1 ki te 10, ka 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}