Whakaoti mō t
t = -\frac{34}{9} = -3\frac{7}{9} \approx -3.777777778
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{7}t+\frac{2}{7}\times \frac{2}{3}=\frac{1}{5}\left(t-\frac{2}{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{7} ki te t+\frac{2}{3}.
\frac{2}{7}t+\frac{2\times 2}{7\times 3}=\frac{1}{5}\left(t-\frac{2}{3}\right)
Me whakarea te \frac{2}{7} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}\left(t-\frac{2}{3}\right)
Mahia ngā whakarea i roto i te hautanga \frac{2\times 2}{7\times 3}.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t+\frac{1}{5}\left(-\frac{2}{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{5} ki te t-\frac{2}{3}.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t+\frac{1\left(-2\right)}{5\times 3}
Me whakarea te \frac{1}{5} ki te -\frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t+\frac{-2}{15}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-2\right)}{5\times 3}.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t-\frac{2}{15}
Ka taea te hautanga \frac{-2}{15} te tuhi anō ko -\frac{2}{15} mā te tango i te tohu tōraro.
\frac{2}{7}t+\frac{4}{21}-\frac{1}{5}t=-\frac{2}{15}
Tangohia te \frac{1}{5}t mai i ngā taha e rua.
\frac{3}{35}t+\frac{4}{21}=-\frac{2}{15}
Pahekotia te \frac{2}{7}t me -\frac{1}{5}t, ka \frac{3}{35}t.
\frac{3}{35}t=-\frac{2}{15}-\frac{4}{21}
Tangohia te \frac{4}{21} mai i ngā taha e rua.
\frac{3}{35}t=-\frac{14}{105}-\frac{20}{105}
Ko te maha noa iti rawa atu o 15 me 21 ko 105. Me tahuri -\frac{2}{15} me \frac{4}{21} ki te hautau me te tautūnga 105.
\frac{3}{35}t=\frac{-14-20}{105}
Tā te mea he rite te tauraro o -\frac{14}{105} me \frac{20}{105}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{35}t=-\frac{34}{105}
Tangohia te 20 i te -14, ka -34.
t=-\frac{34}{105}\times \frac{35}{3}
Me whakarea ngā taha e rua ki te \frac{35}{3}, te tau utu o \frac{3}{35}.
t=\frac{-34\times 35}{105\times 3}
Me whakarea te -\frac{34}{105} ki te \frac{35}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
t=\frac{-1190}{315}
Mahia ngā whakarea i roto i te hautanga \frac{-34\times 35}{105\times 3}.
t=-\frac{34}{9}
Whakahekea te hautanga \frac{-1190}{315} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 35.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}