Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\left(-5\right)}{7\times 12}-\frac{5}{7}\times \frac{5}{12}-\frac{5}{3}\left(-\frac{1}{4}\right)
Me whakarea te \frac{2}{7} ki te -\frac{5}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-10}{84}-\frac{5}{7}\times \frac{5}{12}-\frac{5}{3}\left(-\frac{1}{4}\right)
Mahia ngā whakarea i roto i te hautanga \frac{2\left(-5\right)}{7\times 12}.
-\frac{5}{42}-\frac{5}{7}\times \frac{5}{12}-\frac{5}{3}\left(-\frac{1}{4}\right)
Whakahekea te hautanga \frac{-10}{84} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{5}{42}-\frac{5\times 5}{7\times 12}-\frac{5}{3}\left(-\frac{1}{4}\right)
Me whakarea te \frac{5}{7} ki te \frac{5}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{5}{42}-\frac{25}{84}-\frac{5}{3}\left(-\frac{1}{4}\right)
Mahia ngā whakarea i roto i te hautanga \frac{5\times 5}{7\times 12}.
-\frac{10}{84}-\frac{25}{84}-\frac{5}{3}\left(-\frac{1}{4}\right)
Ko te maha noa iti rawa atu o 42 me 84 ko 84. Me tahuri -\frac{5}{42} me \frac{25}{84} ki te hautau me te tautūnga 84.
\frac{-10-25}{84}-\frac{5}{3}\left(-\frac{1}{4}\right)
Tā te mea he rite te tauraro o -\frac{10}{84} me \frac{25}{84}, me tango rāua mā te tango i ō raua taurunga.
\frac{-35}{84}-\frac{5}{3}\left(-\frac{1}{4}\right)
Tangohia te 25 i te -10, ka -35.
-\frac{5}{12}-\frac{5}{3}\left(-\frac{1}{4}\right)
Whakahekea te hautanga \frac{-35}{84} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
-\frac{5}{12}+\frac{-5\left(-1\right)}{3\times 4}
Me whakarea te -\frac{5}{3} ki te -\frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{5}{12}+\frac{5}{12}
Mahia ngā whakarea i roto i te hautanga \frac{-5\left(-1\right)}{3\times 4}.
0
Tāpirihia te -\frac{5}{12} ki te \frac{5}{12}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}