Aromātai
\frac{27}{28}\approx 0.964285714
Tauwehe
\frac{3 ^ {3}}{2 ^ {2} \cdot 7} = 0.9642857142857143
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\times 21}{7\times 8}-\frac{1}{7}\left(\frac{5}{2}-4\right)
Me whakarea te \frac{2}{7} ki te \frac{21}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{42}{56}-\frac{1}{7}\left(\frac{5}{2}-4\right)
Mahia ngā whakarea i roto i te hautanga \frac{2\times 21}{7\times 8}.
\frac{3}{4}-\frac{1}{7}\left(\frac{5}{2}-4\right)
Whakahekea te hautanga \frac{42}{56} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
\frac{3}{4}-\frac{1}{7}\left(\frac{5}{2}-\frac{8}{2}\right)
Me tahuri te 4 ki te hautau \frac{8}{2}.
\frac{3}{4}-\frac{1}{7}\times \frac{5-8}{2}
Tā te mea he rite te tauraro o \frac{5}{2} me \frac{8}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{4}-\frac{1}{7}\left(-\frac{3}{2}\right)
Tangohia te 8 i te 5, ka -3.
\frac{3}{4}-\frac{1\left(-3\right)}{7\times 2}
Me whakarea te \frac{1}{7} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3}{4}-\frac{-3}{14}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-3\right)}{7\times 2}.
\frac{3}{4}-\left(-\frac{3}{14}\right)
Ka taea te hautanga \frac{-3}{14} te tuhi anō ko -\frac{3}{14} mā te tango i te tohu tōraro.
\frac{3}{4}+\frac{3}{14}
Ko te tauaro o -\frac{3}{14} ko \frac{3}{14}.
\frac{21}{28}+\frac{6}{28}
Ko te maha noa iti rawa atu o 4 me 14 ko 28. Me tahuri \frac{3}{4} me \frac{3}{14} ki te hautau me te tautūnga 28.
\frac{21+6}{28}
Tā te mea he rite te tauraro o \frac{21}{28} me \frac{6}{28}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{27}{28}
Tāpirihia te 21 ki te 6, ka 27.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}