Tīpoka ki ngā ihirangi matua
Whakaoti mō b (complex solution)
Tick mark Image
Whakaoti mō b
Tick mark Image
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3}{250}ba^{3}\times 2+a^{3}=2\left(6ab+5a^{2}\right)
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 30ba^{3}, arā, te tauraro pātahi he tino iti rawa te kitea o 30b,15a^{3}b.
\frac{3}{125}ba^{3}+a^{3}=2\left(6ab+5a^{2}\right)
Whakareatia te \frac{3}{250} ki te 2, ka \frac{3}{125}.
\frac{3}{125}ba^{3}+a^{3}=12ab+10a^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6ab+5a^{2}.
\frac{3}{125}ba^{3}+a^{3}-12ab=10a^{2}
Tangohia te 12ab mai i ngā taha e rua.
\frac{3}{125}ba^{3}-12ab=10a^{2}-a^{3}
Tangohia te a^{3} mai i ngā taha e rua.
\left(\frac{3}{125}a^{3}-12a\right)b=10a^{2}-a^{3}
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(\frac{3a^{3}}{125}-12a\right)b=10a^{2}-a^{3}
He hanga arowhānui tō te whārite.
\frac{\left(\frac{3a^{3}}{125}-12a\right)b}{\frac{3a^{3}}{125}-12a}=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Whakawehea ngā taha e rua ki te \frac{3}{125}a^{3}-12a.
b=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Mā te whakawehe ki te \frac{3}{125}a^{3}-12a ka wetekia te whakareanga ki te \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}
Whakawehe \left(10-a\right)a^{2} ki te \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}\text{, }b\neq 0
Tē taea kia ōrite te tāupe b ki 0.
\frac{3}{250}ba^{3}\times 2+a^{3}=2\left(6ab+5a^{2}\right)
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 30ba^{3}, arā, te tauraro pātahi he tino iti rawa te kitea o 30b,15a^{3}b.
\frac{3}{125}ba^{3}+a^{3}=2\left(6ab+5a^{2}\right)
Whakareatia te \frac{3}{250} ki te 2, ka \frac{3}{125}.
\frac{3}{125}ba^{3}+a^{3}=12ab+10a^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6ab+5a^{2}.
\frac{3}{125}ba^{3}+a^{3}-12ab=10a^{2}
Tangohia te 12ab mai i ngā taha e rua.
\frac{3}{125}ba^{3}-12ab=10a^{2}-a^{3}
Tangohia te a^{3} mai i ngā taha e rua.
\left(\frac{3}{125}a^{3}-12a\right)b=10a^{2}-a^{3}
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(\frac{3a^{3}}{125}-12a\right)b=10a^{2}-a^{3}
He hanga arowhānui tō te whārite.
\frac{\left(\frac{3a^{3}}{125}-12a\right)b}{\frac{3a^{3}}{125}-12a}=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Whakawehea ngā taha e rua ki te \frac{3}{125}a^{3}-12a.
b=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Mā te whakawehe ki te \frac{3}{125}a^{3}-12a ka wetekia te whakareanga ki te \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}
Whakawehe \left(10-a\right)a^{2} ki te \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}\text{, }b\neq 0
Tē taea kia ōrite te tāupe b ki 0.