Whakaoti mō b (complex solution)
b=-\frac{125a\left(a-10\right)}{3\left(a^{2}-500\right)}
a\neq 10\text{ and }a\neq 0\text{ and }a\neq -10\sqrt{5}\text{ and }a\neq 10\sqrt{5}
Whakaoti mō b
b=-\frac{125a\left(a-10\right)}{3\left(a^{2}-500\right)}
a\neq 10\text{ and }a\neq 0\text{ and }|a|\neq 10\sqrt{5}
Whakaoti mō a (complex solution)
\left\{\begin{matrix}a=\frac{5\left(\sqrt{5\left(36b^{2}+1500b+3125\right)}+125\right)}{3b+125}\text{; }a=\frac{5\left(-\sqrt{5\left(36b^{2}+1500b+3125\right)}+125\right)}{3b+125}\text{, }&b\neq 0\text{ and }b\neq -\frac{125}{3}\\a=50\text{, }&b=-\frac{125}{3}\end{matrix}\right.
Whakaoti mō a
\left\{\begin{matrix}a=\frac{5\left(\sqrt{5\left(36b^{2}+1500b+3125\right)}+125\right)}{3b+125}\text{; }a=\frac{5\left(-\sqrt{5\left(36b^{2}+1500b+3125\right)}+125\right)}{3b+125}\text{, }&\left(b\neq 0\text{ and }b\geq \frac{25\sqrt{5}}{3}-\frac{125}{6}\right)\text{ or }\left(b\neq -\frac{125}{3}\text{ and }b\leq -\frac{25\sqrt{5}}{3}-\frac{125}{6}\right)\\a=50\text{, }&b=-\frac{125}{3}\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{250}ba^{3}\times 2+a^{3}=2\left(6ab+5a^{2}\right)
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 30ba^{3}, arā, te tauraro pātahi he tino iti rawa te kitea o 30b,15a^{3}b.
\frac{3}{125}ba^{3}+a^{3}=2\left(6ab+5a^{2}\right)
Whakareatia te \frac{3}{250} ki te 2, ka \frac{3}{125}.
\frac{3}{125}ba^{3}+a^{3}=12ab+10a^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6ab+5a^{2}.
\frac{3}{125}ba^{3}+a^{3}-12ab=10a^{2}
Tangohia te 12ab mai i ngā taha e rua.
\frac{3}{125}ba^{3}-12ab=10a^{2}-a^{3}
Tangohia te a^{3} mai i ngā taha e rua.
\left(\frac{3}{125}a^{3}-12a\right)b=10a^{2}-a^{3}
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(\frac{3a^{3}}{125}-12a\right)b=10a^{2}-a^{3}
He hanga arowhānui tō te whārite.
\frac{\left(\frac{3a^{3}}{125}-12a\right)b}{\frac{3a^{3}}{125}-12a}=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Whakawehea ngā taha e rua ki te \frac{3}{125}a^{3}-12a.
b=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Mā te whakawehe ki te \frac{3}{125}a^{3}-12a ka wetekia te whakareanga ki te \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}
Whakawehe \left(10-a\right)a^{2} ki te \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}\text{, }b\neq 0
Tē taea kia ōrite te tāupe b ki 0.
\frac{3}{250}ba^{3}\times 2+a^{3}=2\left(6ab+5a^{2}\right)
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 30ba^{3}, arā, te tauraro pātahi he tino iti rawa te kitea o 30b,15a^{3}b.
\frac{3}{125}ba^{3}+a^{3}=2\left(6ab+5a^{2}\right)
Whakareatia te \frac{3}{250} ki te 2, ka \frac{3}{125}.
\frac{3}{125}ba^{3}+a^{3}=12ab+10a^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 6ab+5a^{2}.
\frac{3}{125}ba^{3}+a^{3}-12ab=10a^{2}
Tangohia te 12ab mai i ngā taha e rua.
\frac{3}{125}ba^{3}-12ab=10a^{2}-a^{3}
Tangohia te a^{3} mai i ngā taha e rua.
\left(\frac{3}{125}a^{3}-12a\right)b=10a^{2}-a^{3}
Pahekotia ngā kīanga tau katoa e whai ana i te b.
\left(\frac{3a^{3}}{125}-12a\right)b=10a^{2}-a^{3}
He hanga arowhānui tō te whārite.
\frac{\left(\frac{3a^{3}}{125}-12a\right)b}{\frac{3a^{3}}{125}-12a}=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Whakawehea ngā taha e rua ki te \frac{3}{125}a^{3}-12a.
b=\frac{\left(10-a\right)a^{2}}{\frac{3a^{3}}{125}-12a}
Mā te whakawehe ki te \frac{3}{125}a^{3}-12a ka wetekia te whakareanga ki te \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}
Whakawehe \left(10-a\right)a^{2} ki te \frac{3}{125}a^{3}-12a.
b=\frac{125a\left(10-a\right)}{3\left(a^{2}-500\right)}\text{, }b\neq 0
Tē taea kia ōrite te tāupe b ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}