Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\times 1}{5\times 4}z
Me whakarea te \frac{2}{5} ki te \frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{20}z
Mahia ngā whakarea i roto i te hautanga \frac{2\times 1}{5\times 4}.
\frac{1}{10}z
Whakahekea te hautanga \frac{2}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{2\times 1}{5\times 4}z)
Me whakarea te \frac{2}{5} ki te \frac{1}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{2}{20}z)
Mahia ngā whakarea i roto i te hautanga \frac{2\times 1}{5\times 4}.
\frac{\mathrm{d}}{\mathrm{d}z}(\frac{1}{10}z)
Whakahekea te hautanga \frac{2}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{10}z^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{1}{10}z^{0}
Tango 1 mai i 1.
\frac{1}{10}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{1}{10}
Mō tētahi kupu t, t\times 1=t me 1t=t.