\frac { 2 } { 5 } - 1 \frac { 1 } { 4 } + 45 + 25 \%
Aromātai
\frac{222}{5}=44.4
Tauwehe
\frac{2 \cdot 3 \cdot 37}{5} = 44\frac{2}{5} = 44.4
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{5}-\frac{4+1}{4}+45+\frac{25}{100}
Whakareatia te 1 ki te 4, ka 4.
\frac{2}{5}-\frac{5}{4}+45+\frac{25}{100}
Tāpirihia te 4 ki te 1, ka 5.
\frac{8}{20}-\frac{25}{20}+45+\frac{25}{100}
Ko te maha noa iti rawa atu o 5 me 4 ko 20. Me tahuri \frac{2}{5} me \frac{5}{4} ki te hautau me te tautūnga 20.
\frac{8-25}{20}+45+\frac{25}{100}
Tā te mea he rite te tauraro o \frac{8}{20} me \frac{25}{20}, me tango rāua mā te tango i ō raua taurunga.
-\frac{17}{20}+45+\frac{25}{100}
Tangohia te 25 i te 8, ka -17.
-\frac{17}{20}+\frac{900}{20}+\frac{25}{100}
Me tahuri te 45 ki te hautau \frac{900}{20}.
\frac{-17+900}{20}+\frac{25}{100}
Tā te mea he rite te tauraro o -\frac{17}{20} me \frac{900}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{883}{20}+\frac{25}{100}
Tāpirihia te -17 ki te 900, ka 883.
\frac{883}{20}+\frac{1}{4}
Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{883}{20}+\frac{5}{20}
Ko te maha noa iti rawa atu o 20 me 4 ko 20. Me tahuri \frac{883}{20} me \frac{1}{4} ki te hautau me te tautūnga 20.
\frac{883+5}{20}
Tā te mea he rite te tauraro o \frac{883}{20} me \frac{5}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{888}{20}
Tāpirihia te 883 ki te 5, ka 888.
\frac{222}{5}
Whakahekea te hautanga \frac{888}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}