Whakaoti mō x
x=\frac{23}{30}\approx 0.766666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
12-105x+15\left(\frac{x}{1}+\frac{1}{3}\right)=-75+30x
Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2,3.
12-105x+15\left(x+\frac{1}{3}\right)=-75+30x
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
12-105x+15x+15\times \frac{1}{3}=-75+30x
Whakamahia te āhuatanga tohatoha hei whakarea te 15 ki te x+\frac{1}{3}.
12-105x+15x+\frac{15}{3}=-75+30x
Whakareatia te 15 ki te \frac{1}{3}, ka \frac{15}{3}.
12-105x+15x+5=-75+30x
Whakawehea te 15 ki te 3, kia riro ko 5.
12-90x+5=-75+30x
Pahekotia te -105x me 15x, ka -90x.
17-90x=-75+30x
Tāpirihia te 12 ki te 5, ka 17.
17-90x-30x=-75
Tangohia te 30x mai i ngā taha e rua.
17-120x=-75
Pahekotia te -90x me -30x, ka -120x.
-120x=-75-17
Tangohia te 17 mai i ngā taha e rua.
-120x=-92
Tangohia te 17 i te -75, ka -92.
x=\frac{-92}{-120}
Whakawehea ngā taha e rua ki te -120.
x=\frac{23}{30}
Whakahekea te hautanga \frac{-92}{-120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}