Whakaoti mō x
x = \frac{156}{43} = 3\frac{27}{43} \approx 3.627906977
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 2 } { 5 } ( 2 - x ) = \frac { 7 } { 4 } ( x - 4 )
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{5}\times 2+\frac{2}{5}\left(-1\right)x=\frac{7}{4}\left(x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{5} ki te 2-x.
\frac{2\times 2}{5}+\frac{2}{5}\left(-1\right)x=\frac{7}{4}\left(x-4\right)
Tuhia te \frac{2}{5}\times 2 hei hautanga kotahi.
\frac{4}{5}+\frac{2}{5}\left(-1\right)x=\frac{7}{4}\left(x-4\right)
Whakareatia te 2 ki te 2, ka 4.
\frac{4}{5}-\frac{2}{5}x=\frac{7}{4}\left(x-4\right)
Whakareatia te \frac{2}{5} ki te -1, ka -\frac{2}{5}.
\frac{4}{5}-\frac{2}{5}x=\frac{7}{4}x+\frac{7}{4}\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{7}{4} ki te x-4.
\frac{4}{5}-\frac{2}{5}x=\frac{7}{4}x+\frac{7\left(-4\right)}{4}
Tuhia te \frac{7}{4}\left(-4\right) hei hautanga kotahi.
\frac{4}{5}-\frac{2}{5}x=\frac{7}{4}x+\frac{-28}{4}
Whakareatia te 7 ki te -4, ka -28.
\frac{4}{5}-\frac{2}{5}x=\frac{7}{4}x-7
Whakawehea te -28 ki te 4, kia riro ko -7.
\frac{4}{5}-\frac{2}{5}x-\frac{7}{4}x=-7
Tangohia te \frac{7}{4}x mai i ngā taha e rua.
\frac{4}{5}-\frac{43}{20}x=-7
Pahekotia te -\frac{2}{5}x me -\frac{7}{4}x, ka -\frac{43}{20}x.
-\frac{43}{20}x=-7-\frac{4}{5}
Tangohia te \frac{4}{5} mai i ngā taha e rua.
-\frac{43}{20}x=-\frac{35}{5}-\frac{4}{5}
Me tahuri te -7 ki te hautau -\frac{35}{5}.
-\frac{43}{20}x=\frac{-35-4}{5}
Tā te mea he rite te tauraro o -\frac{35}{5} me \frac{4}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{43}{20}x=-\frac{39}{5}
Tangohia te 4 i te -35, ka -39.
x=-\frac{39}{5}\left(-\frac{20}{43}\right)
Me whakarea ngā taha e rua ki te -\frac{20}{43}, te tau utu o -\frac{43}{20}.
x=\frac{-39\left(-20\right)}{5\times 43}
Me whakarea te -\frac{39}{5} ki te -\frac{20}{43} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{780}{215}
Mahia ngā whakarea i roto i te hautanga \frac{-39\left(-20\right)}{5\times 43}.
x=\frac{156}{43}
Whakahekea te hautanga \frac{780}{215} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}