Whakaoti mō x
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\left(x-\frac{5}{3}\left(x+4\right)\right)=5\left(x-3\right)-10\left(x+2\right)
Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
6\left(x-\frac{5}{3}x-\frac{5}{3}\times 4\right)=5\left(x-3\right)-10\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{5}{3} ki te x+4.
6\left(x-\frac{5}{3}x+\frac{-5\times 4}{3}\right)=5\left(x-3\right)-10\left(x+2\right)
Tuhia te -\frac{5}{3}\times 4 hei hautanga kotahi.
6\left(x-\frac{5}{3}x+\frac{-20}{3}\right)=5\left(x-3\right)-10\left(x+2\right)
Whakareatia te -5 ki te 4, ka -20.
6\left(x-\frac{5}{3}x-\frac{20}{3}\right)=5\left(x-3\right)-10\left(x+2\right)
Ka taea te hautanga \frac{-20}{3} te tuhi anō ko -\frac{20}{3} mā te tango i te tohu tōraro.
6\left(-\frac{2}{3}x-\frac{20}{3}\right)=5\left(x-3\right)-10\left(x+2\right)
Pahekotia te x me -\frac{5}{3}x, ka -\frac{2}{3}x.
6\left(-\frac{2}{3}\right)x+6\left(-\frac{20}{3}\right)=5\left(x-3\right)-10\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te -\frac{2}{3}x-\frac{20}{3}.
\frac{6\left(-2\right)}{3}x+6\left(-\frac{20}{3}\right)=5\left(x-3\right)-10\left(x+2\right)
Tuhia te 6\left(-\frac{2}{3}\right) hei hautanga kotahi.
\frac{-12}{3}x+6\left(-\frac{20}{3}\right)=5\left(x-3\right)-10\left(x+2\right)
Whakareatia te 6 ki te -2, ka -12.
-4x+6\left(-\frac{20}{3}\right)=5\left(x-3\right)-10\left(x+2\right)
Whakawehea te -12 ki te 3, kia riro ko -4.
-4x+\frac{6\left(-20\right)}{3}=5\left(x-3\right)-10\left(x+2\right)
Tuhia te 6\left(-\frac{20}{3}\right) hei hautanga kotahi.
-4x+\frac{-120}{3}=5\left(x-3\right)-10\left(x+2\right)
Whakareatia te 6 ki te -20, ka -120.
-4x-40=5\left(x-3\right)-10\left(x+2\right)
Whakawehea te -120 ki te 3, kia riro ko -40.
-4x-40=5x-15-10\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-3.
-4x-40=5x-15-10x-20
Whakamahia te āhuatanga tohatoha hei whakarea te -10 ki te x+2.
-4x-40=-5x-15-20
Pahekotia te 5x me -10x, ka -5x.
-4x-40=-5x-35
Tangohia te 20 i te -15, ka -35.
-4x-40+5x=-35
Me tāpiri te 5x ki ngā taha e rua.
x-40=-35
Pahekotia te -4x me 5x, ka x.
x=-35+40
Me tāpiri te 40 ki ngā taha e rua.
x=5
Tāpirihia te -35 ki te 40, ka 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}