Manatoko
pono
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 2 } { 4 \frac { 1 } { 4 } } = \frac { 8 } { 17 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\times 4}{4\times 4+1}=\frac{8}{17}
Whakawehe 2 ki te \frac{4\times 4+1}{4} mā te whakarea 2 ki te tau huripoki o \frac{4\times 4+1}{4}.
\frac{8}{4\times 4+1}=\frac{8}{17}
Whakareatia te 2 ki te 4, ka 8.
\frac{8}{16+1}=\frac{8}{17}
Whakareatia te 4 ki te 4, ka 16.
\frac{8}{17}=\frac{8}{17}
Tāpirihia te 16 ki te 1, ka 17.
\text{true}
Whakatauritea te \frac{8}{17} me te \frac{8}{17}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}