Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\left(4-\sqrt{35}\right)}{\left(4+\sqrt{35}\right)\left(4-\sqrt{35}\right)}
Whakangāwaritia te tauraro o \frac{2}{4+\sqrt{35}} mā te whakarea i te taurunga me te tauraro ki te 4-\sqrt{35}.
\frac{2\left(4-\sqrt{35}\right)}{4^{2}-\left(\sqrt{35}\right)^{2}}
Whakaarohia te \left(4+\sqrt{35}\right)\left(4-\sqrt{35}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(4-\sqrt{35}\right)}{16-35}
Pūrua 4. Pūrua \sqrt{35}.
\frac{2\left(4-\sqrt{35}\right)}{-19}
Tangohia te 35 i te 16, ka -19.
\frac{8-2\sqrt{35}}{-19}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 4-\sqrt{35}.