Whakaoti mō x
x=1
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2=3x+3x^{2}\left(-\frac{1}{3}\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 3x^{2},x,3.
2=3x-x^{2}
Whakareatia te 3 ki te -\frac{1}{3}, ka -1.
3x-x^{2}=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x-x^{2}-2=0
Tangohia te 2 mai i ngā taha e rua.
-x^{2}+3x-2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=3 ab=-\left(-2\right)=2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=2 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+2x\right)+\left(x-2\right)
Tuhia anō te -x^{2}+3x-2 hei \left(-x^{2}+2x\right)+\left(x-2\right).
-x\left(x-2\right)+x-2
Whakatauwehea atu -x i te -x^{2}+2x.
\left(x-2\right)\left(-x+1\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=1
Hei kimi otinga whārite, me whakaoti te x-2=0 me te -x+1=0.
2=3x+3x^{2}\left(-\frac{1}{3}\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 3x^{2},x,3.
2=3x-x^{2}
Whakareatia te 3 ki te -\frac{1}{3}, ka -1.
3x-x^{2}=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x-x^{2}-2=0
Tangohia te 2 mai i ngā taha e rua.
-x^{2}+3x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 3 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+4\left(-2\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-3±\sqrt{9-8}}{2\left(-1\right)}
Whakareatia 4 ki te -2.
x=\frac{-3±\sqrt{1}}{2\left(-1\right)}
Tāpiri 9 ki te -8.
x=\frac{-3±1}{2\left(-1\right)}
Tuhia te pūtakerua o te 1.
x=\frac{-3±1}{-2}
Whakareatia 2 ki te -1.
x=-\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{-3±1}{-2} ina he tāpiri te ±. Tāpiri -3 ki te 1.
x=1
Whakawehe -2 ki te -2.
x=-\frac{4}{-2}
Nā, me whakaoti te whārite x=\frac{-3±1}{-2} ina he tango te ±. Tango 1 mai i -3.
x=2
Whakawehe -4 ki te -2.
x=1 x=2
Kua oti te whārite te whakatau.
2=3x+3x^{2}\left(-\frac{1}{3}\right)
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3x^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 3x^{2},x,3.
2=3x-x^{2}
Whakareatia te 3 ki te -\frac{1}{3}, ka -1.
3x-x^{2}=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-x^{2}+3x=2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+3x}{-1}=\frac{2}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{3}{-1}x=\frac{2}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-3x=\frac{2}{-1}
Whakawehe 3 ki te -1.
x^{2}-3x=-2
Whakawehe 2 ki te -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
Tāpiri -2 ki te \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Whakarūnātia.
x=2 x=1
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}