Whakaoti mō x
x=\frac{9y}{8}+3
Whakaoti mō y
y=\frac{8\left(x-3\right)}{9}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}x=2+\frac{3}{4}y
Me tāpiri te \frac{3}{4}y ki ngā taha e rua.
\frac{2}{3}x=\frac{3y}{4}+2
He hanga arowhānui tō te whārite.
\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{\frac{3y}{4}+2}{\frac{2}{3}}
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{\frac{3y}{4}+2}{\frac{2}{3}}
Mā te whakawehe ki te \frac{2}{3} ka wetekia te whakareanga ki te \frac{2}{3}.
x=\frac{9y}{8}+3
Whakawehe 2+\frac{3y}{4} ki te \frac{2}{3} mā te whakarea 2+\frac{3y}{4} ki te tau huripoki o \frac{2}{3}.
-\frac{3}{4}y=2-\frac{2}{3}x
Tangohia te \frac{2}{3}x mai i ngā taha e rua.
-\frac{3}{4}y=-\frac{2x}{3}+2
He hanga arowhānui tō te whārite.
\frac{-\frac{3}{4}y}{-\frac{3}{4}}=\frac{-\frac{2x}{3}+2}{-\frac{3}{4}}
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{-\frac{2x}{3}+2}{-\frac{3}{4}}
Mā te whakawehe ki te -\frac{3}{4} ka wetekia te whakareanga ki te -\frac{3}{4}.
y=\frac{8x}{9}-\frac{8}{3}
Whakawehe 2-\frac{2x}{3} ki te -\frac{3}{4} mā te whakarea 2-\frac{2x}{3} ki te tau huripoki o -\frac{3}{4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}