Whakaoti mō x
x=\sqrt{78}\approx 8.831760866
x=-\sqrt{78}\approx -8.831760866
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}x^{2}=87-35
Tangohia te 35 mai i ngā taha e rua.
\frac{2}{3}x^{2}=52
Tangohia te 35 i te 87, ka 52.
x^{2}=52\times \frac{3}{2}
Me whakarea ngā taha e rua ki te \frac{3}{2}, te tau utu o \frac{2}{3}.
x^{2}=78
Whakareatia te 52 ki te \frac{3}{2}, ka 78.
x=\sqrt{78} x=-\sqrt{78}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{2}{3}x^{2}+35-87=0
Tangohia te 87 mai i ngā taha e rua.
\frac{2}{3}x^{2}-52=0
Tangohia te 87 i te 35, ka -52.
x=\frac{0±\sqrt{0^{2}-4\times \frac{2}{3}\left(-52\right)}}{2\times \frac{2}{3}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{2}{3} mō a, 0 mō b, me -52 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{2}{3}\left(-52\right)}}{2\times \frac{2}{3}}
Pūrua 0.
x=\frac{0±\sqrt{-\frac{8}{3}\left(-52\right)}}{2\times \frac{2}{3}}
Whakareatia -4 ki te \frac{2}{3}.
x=\frac{0±\sqrt{\frac{416}{3}}}{2\times \frac{2}{3}}
Whakareatia -\frac{8}{3} ki te -52.
x=\frac{0±\frac{4\sqrt{78}}{3}}{2\times \frac{2}{3}}
Tuhia te pūtakerua o te \frac{416}{3}.
x=\frac{0±\frac{4\sqrt{78}}{3}}{\frac{4}{3}}
Whakareatia 2 ki te \frac{2}{3}.
x=\sqrt{78}
Nā, me whakaoti te whārite x=\frac{0±\frac{4\sqrt{78}}{3}}{\frac{4}{3}} ina he tāpiri te ±.
x=-\sqrt{78}
Nā, me whakaoti te whārite x=\frac{0±\frac{4\sqrt{78}}{3}}{\frac{4}{3}} ina he tango te ±.
x=\sqrt{78} x=-\sqrt{78}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}