Aromātai
-\frac{5942}{15}\approx -396.133333333
Tauwehe
-\frac{5942}{15} = -396\frac{2}{15} = -396.1333333333333
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 2 } { 3 } - 8 \cdot [ 4 - 6 ( \frac { 2 } { 5 } - 8 ) ]
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}-8\left(4-6\left(\frac{2}{5}-\frac{40}{5}\right)\right)
Me tahuri te 8 ki te hautau \frac{40}{5}.
\frac{2}{3}-8\left(4-6\times \frac{2-40}{5}\right)
Tā te mea he rite te tauraro o \frac{2}{5} me \frac{40}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{2}{3}-8\left(4-6\left(-\frac{38}{5}\right)\right)
Tangohia te 40 i te 2, ka -38.
\frac{2}{3}-8\left(4-\frac{6\left(-38\right)}{5}\right)
Tuhia te 6\left(-\frac{38}{5}\right) hei hautanga kotahi.
\frac{2}{3}-8\left(4-\frac{-228}{5}\right)
Whakareatia te 6 ki te -38, ka -228.
\frac{2}{3}-8\left(4-\left(-\frac{228}{5}\right)\right)
Ka taea te hautanga \frac{-228}{5} te tuhi anō ko -\frac{228}{5} mā te tango i te tohu tōraro.
\frac{2}{3}-8\left(4+\frac{228}{5}\right)
Ko te tauaro o -\frac{228}{5} ko \frac{228}{5}.
\frac{2}{3}-8\left(\frac{20}{5}+\frac{228}{5}\right)
Me tahuri te 4 ki te hautau \frac{20}{5}.
\frac{2}{3}-8\times \frac{20+228}{5}
Tā te mea he rite te tauraro o \frac{20}{5} me \frac{228}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2}{3}-8\times \frac{248}{5}
Tāpirihia te 20 ki te 228, ka 248.
\frac{2}{3}-\frac{8\times 248}{5}
Tuhia te 8\times \frac{248}{5} hei hautanga kotahi.
\frac{2}{3}-\frac{1984}{5}
Whakareatia te 8 ki te 248, ka 1984.
\frac{10}{15}-\frac{5952}{15}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{2}{3} me \frac{1984}{5} ki te hautau me te tautūnga 15.
\frac{10-5952}{15}
Tā te mea he rite te tauraro o \frac{10}{15} me \frac{5952}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5942}{15}
Tangohia te 5952 i te 10, ka -5942.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}