Whakaoti mō b
b=-5+\frac{1}{3x}
x\neq 0
Whakaoti mō x
x=\frac{1}{3\left(b+5\right)}
b\neq -5
Graph
Tohaina
Kua tāruatia ki te papatopenga
bx+\frac{1}{3}=\frac{2}{3}-5x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
bx=\frac{2}{3}-5x-\frac{1}{3}
Tangohia te \frac{1}{3} mai i ngā taha e rua.
bx=\frac{1}{3}-5x
Tangohia te \frac{1}{3} i te \frac{2}{3}, ka \frac{1}{3}.
xb=\frac{1}{3}-5x
He hanga arowhānui tō te whārite.
\frac{xb}{x}=\frac{\frac{1}{3}-5x}{x}
Whakawehea ngā taha e rua ki te x.
b=\frac{\frac{1}{3}-5x}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
b=-5+\frac{1}{3x}
Whakawehe \frac{1}{3}-5x ki te x.
\frac{2}{3}-5x-bx=\frac{1}{3}
Tangohia te bx mai i ngā taha e rua.
-5x-bx=\frac{1}{3}-\frac{2}{3}
Tangohia te \frac{2}{3} mai i ngā taha e rua.
-5x-bx=-\frac{1}{3}
Tangohia te \frac{2}{3} i te \frac{1}{3}, ka -\frac{1}{3}.
\left(-5-b\right)x=-\frac{1}{3}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(-b-5\right)x=-\frac{1}{3}
He hanga arowhānui tō te whārite.
\frac{\left(-b-5\right)x}{-b-5}=-\frac{\frac{1}{3}}{-b-5}
Whakawehea ngā taha e rua ki te -5-b.
x=-\frac{\frac{1}{3}}{-b-5}
Mā te whakawehe ki te -5-b ka wetekia te whakareanga ki te -5-b.
x=\frac{1}{3\left(b+5\right)}
Whakawehe -\frac{1}{3} ki te -5-b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}