Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(3x-1\right)\left(3x+1\right)\times \frac{2}{3}-3\times 6x^{2}=\left(9x+3\right)\times 2
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{3},\frac{1}{3} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(3x-1\right)\left(3x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 3,9x^{2}-1,3x-1.
\left(9x-3\right)\left(3x+1\right)\times \frac{2}{3}-3\times 6x^{2}=\left(9x+3\right)\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x-1.
\left(27x^{2}-3\right)\times \frac{2}{3}-3\times 6x^{2}=\left(9x+3\right)\times 2
Whakamahia te āhuatanga tuaritanga hei whakarea te 9x-3 ki te 3x+1 ka whakakotahi i ngā kupu rite.
18x^{2}-2-3\times 6x^{2}=\left(9x+3\right)\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te 27x^{2}-3 ki te \frac{2}{3}.
18x^{2}-2-18x^{2}=\left(9x+3\right)\times 2
Whakareatia te -3 ki te 6, ka -18.
-2=\left(9x+3\right)\times 2
Pahekotia te 18x^{2} me -18x^{2}, ka 0.
-2=18x+6
Whakamahia te āhuatanga tohatoha hei whakarea te 9x+3 ki te 2.
18x+6=-2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
18x=-2-6
Tangohia te 6 mai i ngā taha e rua.
18x=-8
Tangohia te 6 i te -2, ka -8.
x=\frac{-8}{18}
Whakawehea ngā taha e rua ki te 18.
x=-\frac{4}{9}
Whakahekea te hautanga \frac{-8}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.